Nicotinic Receptors in the Development and Modulation of CNS Synapses

[1]  A. Karlin,et al.  Functional contributions of α5 subunit to neuronal acetylcholine receptor channels , 1996, Nature.

[2]  A. Karlin,et al.  Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins , 1995, Neuron.

[3]  Pb Sargent,et al.  Perisynaptic surface distribution of multiple classes of nicotinic acetylcholine receptors on neurons in the chicken ciliary ganglion , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  Pb Sargent,et al.  Pronounced cellular diversity and extrasynaptic location of nicotinic acetylcholine receptor subunit immunoreactivities in the chicken pretectum , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  E. Frank,et al.  The nicotinic blocking agents d-tubocurare and alpha-bungarotoxin save motoneurons from naturally occurring death in the absence of neuromuscular blockade , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  L. Role,et al.  Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. , 1995, Science.

[7]  E. Albuquerque,et al.  Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons. III. Agonist actions of the novel alkaloid epibatidine and analysis of type II current. , 1995, The Journal of pharmacology and experimental therapeutics.

[8]  M. Gershon,et al.  Expression of nicotinic acetylcholine receptors and subunit mRNA transcripts in cultures of neural crest cells. , 1995, Developmental biology.

[9]  M. Mayer,et al.  Structure and function of glutamate and nicotinic acetylcholine receptors , 1995, Current Opinion in Neurobiology.

[10]  M. Amador,et al.  Mechanism for modulation of nicotinic acetylcholine receptors that can influence synaptic transmission , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  N. Davidson,et al.  Regions of beta 2 and beta 4 responsible for differences between the steady state dose-response relationships of the alpha 3 beta 2 and alpha 3 beta 4 neuronal nicotinic receptors , 1995, The Journal of general physiology.

[12]  E. Albuquerque,et al.  Nicotinic responses in acutely dissociated rat hippocampal neurons and the selective blockade of fast-desensitizing nicotinic currents by lead. , 1995, The Journal of pharmacology and experimental therapeutics.

[13]  A. Lajtha,et al.  Neurochemical Evidence of Heterogeneity of Presynaptic and Somatodendritic Nicotinic Acetylcholine Receptors a , 1995, Annals of the New York Academy of Sciences.

[14]  D. Berg,et al.  Arachidonic acid as a possible negative feedback inhibitor of nicotinic acetylcholine receptors on neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  D. Colquhoun,et al.  Heterogeneity of neuronal nicotinic acetylcholine receptors in thin slices of rat medial habenula. , 1995, The Journal of physiology.

[16]  R. Corriveau,et al.  Novel subpopulation of neuronal acetylcholine receptors among those binding alpha-bungarotoxin. , 1995, Molecular pharmacology.

[17]  D. K. Berg,et al.  Neurons Can Maintain Multiple Classes of Nicotinic Acetylcholine Receptors Distinguished by Different Subunit Compositions (*) , 1995, The Journal of Biological Chemistry.

[18]  Michele Zoli,et al.  Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain , 1995, Nature.

[19]  George G. Lunt,et al.  Evolutionary history of the ligand-gated ion-channel superfamily of receptors , 1995, Trends in Neurosciences.

[20]  J. R. James,et al.  Genetic and environmental aspects of the role of nicotinic receptors in neurodegenerative disorders: Emphasis on Alzheimer's disease and Parkinson's disease , 1995, Behavior genetics.

[21]  M. Zoli,et al.  Developmental regulation of nicotinic ACh receptor subunit mRNAs in the rat central and peripheral nervous systems , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  J. A. Dani,et al.  Comparison of quantitative calcium flux through NMDA, ATP, and ACh receptor channels. , 1995, Biophysical journal.

[23]  S. T. Kitai,et al.  Glutamatergic and cholinergic inputs from the pedunculopontine tegmental nucleus to dopamine neurons in the substantia nigra pars compacta , 1995, Neuroscience Research.

[24]  R. Corriveau,et al.  Expression of neuronal acetylcholine receptor genes in vertebrate skeletal muscle during development , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[25]  E. Albuquerque,et al.  alpha-Bungarotoxin-sensitive hippocampal nicotinic receptor channel has a high calcium permeability. , 1995, Biophysical journal.

[26]  S. Heinemann,et al.  α9: An acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells , 1994, Cell.

[27]  D. Colquhoun,et al.  Comparison of neuronal nicotinic receptors in rat sympathetic neurones with subunit pairs expressed in Xenopus oocytes. , 1994, The Journal of physiology.

[28]  D. Berg,et al.  Synaptic-type acetylcholine receptors raise intracellular calcium levels in neurons by two mechanisms , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  Jagdeepkaur Dani,et al.  Quantitative measurement of calcium flux through muscle and neuronal nicotinic acetylcholine receptors , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  J. Patrick,et al.  α-Bungarotoxin blocks the nicotinic receptor mediated increase in cell number in a neuroendocrine cell line , 1994, Brain Research.

[31]  L. McMahon,et al.  Nicotinic receptor activation facilitates gabaergic neurotransmission in the avian lateral spiriform nucleus , 1994, Neuroscience.

[32]  Mu-ming Poo,et al.  Turning of nerve growth cones induced by neurotransmitters , 1994, Nature.

[33]  L. Role,et al.  Regulation of nAChR subunit gene expression relative to the development of pre- and postsynaptic projections of embryonic chick sympathetic neurons. , 1994, Developmental biology.

[34]  D. Berg,et al.  Neuronal acetylcholine receptors that bind alpha-bungarotoxin mediate neurite retraction in a calcium-dependent manner , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  L. McMahon,et al.  Electrophysiological evidence for presynaptic nicotinic receptors in the avian ventral lateral geniculate nucleus. , 1994, Journal of neurophysiology.

[36]  P. Clarke,et al.  Blockade of nicotinic receptor‐mediated release of dopamine from striatal synaptosomes by chlorisondamine administered in vivo , 1994, British journal of pharmacology.

[37]  R Anand,et al.  Homomers of alpha 8 and alpha 7 subunits of nicotinic receptors exhibit similar channel but contrasting binding site properties. , 1994, Molecular pharmacology.

[38]  R. Lester,et al.  Time-dependent changes in central nicotinic acetylcholine channel kinetics in excised patches , 1994, Neuropharmacology.

[39]  Zhong-Wei Zhang,et al.  Neuronal acetylcholine receptors that bind α-bungarotoxin with high affinity function as ligand-gated ion channels , 1994, Neuron.

[40]  L. Arenella,et al.  Reduced levels of acetylcholine receptor expression in chick ciliary ganglion neurons developing in the absence of innervation , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  J. Changeux,et al.  Nicotinic and muscarinic modulations of excitatory synaptic transmission in the rat prefrontal cortexin vitro , 1993, Neuroscience.

[42]  J. Patrick,et al.  Mapping of ligand binding sites of neuronal nicotinic acetylcholine receptors using chimeric alpha subunits. , 1993, Molecular pharmacology.

[43]  J. Changeux,et al.  Stratification of the channel domain in neurotransmitter receptors. , 1993, Current opinion in cell biology.

[44]  J P Changeux,et al.  Mutations at two distinct sites within the channel domain M2 alter calcium permeability of neuronal alpha 7 nicotinic receptor. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[45]  C. Mulle,et al.  Evidence for "preterminal" nicotinic receptors on GABAergic axons in the rat interpeduncular nucleus , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  E. Albuquerque,et al.  Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons. I. Pharmacological and functional evidence for distinct structural subtypes. , 1993, The Journal of pharmacology and experimental therapeutics.

[47]  D. Berg,et al.  Coexpression of multiple acetylcholine receptor genes in neurons: quantification of transcripts during development , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  A. Vernallis,et al.  Neurons assemble acetylcholine receptors with as many as three kinds of subunits while maintaining subunit segregation among receptor subtypes , 1993, Neuron.

[49]  J. Patrick,et al.  Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  A. C. Collins,et al.  Nicotinic receptor function determined by stimulation of rubidium efflux from mouse brain synaptosomes. , 1993, The Journal of pharmacology and experimental therapeutics.

[51]  L. Role,et al.  Enhanced ACh sensitivity is accompanied by changes in ACh receptor channel properties and segregation of ACh receptor subtypes on sympathetic neurons during innervation in vivo , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  Jean-Luc Galzi,et al.  Mutations in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic , 1992, Nature.

[53]  A. Vernallis,et al.  The α5 gene product assembles with multiple acetylcholine receptor subunits to form distinctive receptor subtypes in brain , 1992, Neuron.

[54]  F. Edwards,et al.  ATP receptor-mediated synaptic currents in the central nervous system , 1992, Nature.

[55]  A. C. Collins,et al.  Characterization of Nicotinic Receptor‐Mediated [3H]Dopamine Release from Synaptosomes Prepared from Mouse Striatum , 1992, Journal of neurochemistry.

[56]  H. Schulman,et al.  Multiple Ca2+ signaling pathways converge on CaM kinase in PC12 cells , 1992, FEBS letters.

[57]  Christophe Mulle,et al.  Potentiation of nicotinic receptor response by external calcium in rat central neurons , 1992, Neuron.

[58]  N. Davidson,et al.  Pharmacological and kinetic properties of alpha 4 beta 2 neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes. , 1992, The Journal of physiology.

[59]  J. Gallagher,et al.  Direct muscarinic and nicotinic receptor‐mediated excitation of rat medial vestibular nucleus neurons in vitro , 1992, Synapse.

[60]  P A Fuchs,et al.  Cholinergic inhibition of short (outer) hair cells of the chick's cochlea , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[61]  S. Sands,et al.  Neuronal nicotinic acetylcholine receptor currents in phaeochromocytoma (PC12) cells: dual mechanisms of rectification. , 1992, The Journal of physiology.

[62]  J. Patrick,et al.  Calcium modulation and high calcium permeability of neuronal nicotinic acetylcholine receptors , 1992, Neuron.

[63]  J. Changeux,et al.  Calcium influx through nicotinic receptor in rat central neurons: Its relevance to cellular regulation , 1992, Neuron.

[64]  Nancy J. Woolf,et al.  Cholinergic systems in mammalian brain and spinal cord , 1991, Progress in Neurobiology.

[65]  A. Brussaard,et al.  Functional contribution of neuronal AChR subunits revealed by antisense oligonucleotides. , 1991, Science.

[66]  J. Changeux,et al.  Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor , 1991, Nature.

[67]  P. Whiting,et al.  Structural and pharmacological characterization of the major brain nicotinic acetylcholine receptor subtype stably expressed in mouse fibroblasts. , 1991, Molecular pharmacology.

[68]  S. Heinemann,et al.  The role of the beta 4‐subunit in determining the kinetic properties of rat neuronal nicotinic acetylcholine alpha 3‐receptors. , 1991, The Journal of physiology.

[69]  C. Mulle,et al.  Existence of different subtypes of nicotinic acetylcholine receptors in the rat habenulo-interpeduncular system , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[70]  P. Whiting,et al.  Neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes have a pentameric quaternary structure. , 1991, The Journal of biological chemistry.

[71]  M. Ballivet,et al.  Pentameric structure and subunit stoichiometry of a neuronal nicotinic acetylcholine receptor , 1991, Nature.

[72]  J. Patrick,et al.  Both alpha- and beta-subunits contribute to the agonist sensitivity of neuronal nicotinic acetylcholine receptors , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[73]  David John Adams,et al.  Acetylcholine‐evoked currents in cultured neurones dissociated from rat parasympathetic cardiac ganglia. , 1991, The Journal of physiology.

[74]  E. Aizenman,et al.  Autoradiographic localization of putative nicotinic receptors in the rat brain using 125I-neuronal bungarotoxin , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[75]  C. Karwoski,et al.  Light-evoked changes in extracellular calcium concentration in frog retina , 1990, Vision Research.

[76]  D. Bertrand,et al.  A neuronal nicotinic acetylcholine receptor subunit (α7) is developmentally regulated and forms a homo-oligomeric channel blocked by α-BTX , 1990, Neuron.

[77]  W. King Nicotinic depolarization of optic nerve terminals augments synaptic transmission , 1990, Brain Research.

[78]  S. Heinemann,et al.  Neurotoxins Distinguish Between Different Neuronal Nicotinic Acetylcholine Receptor Subunit Combinations , 1990, Journal of neurochemistry.

[79]  P. Whiting,et al.  Brain α-bungarotoxin binding protein cDNAs and MAbs reveal subtypes of this branch of the ligand-gated ion channel gene superfamily , 1990, Neuron.

[80]  G. Lunt,et al.  Nicotinic Modulation of [3H]Dopamine Release from Striatal Synaptosomes: Pharmacological Characterisation , 1990, Journal of neurochemistry.

[81]  J. Changeux,et al.  Pharmacological profile of nicotinic acetylcholine receptors in the rat prefrontal cortex: An electrophysiological study in a slice preparation , 1989, Neuroscience.

[82]  R. Quirion,et al.  Presynaptic Cholinergic Mechanisms in the Rat Cerebellum: Evidence for Nicotinic, but Not Muscarinic Autoreceptors , 1989, Journal of neurochemistry.

[83]  Y. Oomura,et al.  Acetylcholine causes nicotinic depolarization in rat dorsal motor nucleus of the vagus, in vitro , 1989, Brain Research.

[84]  S. Schuetze,et al.  Functional properties and developmental regulation of nicotinic acetylcholine receptors on embryonic chicken sympathetic neurons , 1989, Neuron.

[85]  S. Heinemann,et al.  Single-channel currents of rat neuronal nicotinic acetylcholine receptors expressed in xenopus oocytes , 1989, Neuron.

[86]  D. Gurantz,et al.  Changes in the number, function, and regulation of nicotinic acetylcholine receptors during neuronal development. , 1989, Developmental biology.

[87]  C. Bader,et al.  Electrophysiology of a chick neuronal nicotinic acetylcholine receptor expressed in xenopus oocytes after cDNA injection , 1988, Neuron.

[88]  P. Whiting,et al.  cDNA clones coding for the structural subunit of a chicken brain nicotinic acetylcholine receptor , 1988, Neuron.

[89]  G. Lunt,et al.  Stereoselective Nicotine‐Induced Release of Dopamine from Striatal Synaptosomes: Concentration Dependence and Repetitive Stimulation , 1988, Journal of neurochemistry.

[90]  D. Hommer,et al.  Innervation of substantia nigra neurons by cholinergic afferents from pedunculopontine nucleus in the rat: neuroanatomical and electrophysiological evidence , 1987, Neuroscience.

[91]  P. Whiting,et al.  Structurally different neuronal nicotinic acetylcholine receptor subtypes purified and characterized using monoclonal antibodies , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[92]  P. Whiting,et al.  Neuronal nicotinic acetylcholine receptor β‐subunit is coded for by the cDNA clone α4 , 1987 .

[93]  M. Greenberg,et al.  Stimulation of neuronal acetylcholine receptors induces rapid gene transcription. , 1986, Science.

[94]  D. Jacobowitz,et al.  3H‐nicotine‐ and 125I‐alpha‐bungarotoxin‐labeled nicotinic receptors in the interpeduncular nucleus of rats. II. Effects of habenular deafferentation , 1986, The Journal of comparative neurology.

[95]  M. Poo,et al.  Initial events in the formation of neuromuscular synapse: rapid induction of acetylcholine release from embryonic neuron. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[96]  J. Henley,et al.  Acetylcholine receptor synthesis in retina and transport to optic tectum in goldfish. , 1986, Science.

[97]  P. Clarke,et al.  Autoradiographic evidence for nicotine receptors on nigrostriatal and mesolimbic dopaminergic neurons , 1985, Brain Research.

[98]  M. Williams,et al.  Nicotinic receptors in mammalian brain , 1984, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[99]  D. A. Brown,et al.  The action of cholinomimetic substances on impulse conduction in the habenulointerpeduncular pathway of the rat in vitro. , 1984, The Journal of physiology.

[100]  R. North,et al.  Calcium entry through acetylcholine-channels can activate potassium conductance in bullfrog sympathetic neurons , 1984, Brain Research.

[101]  Mu-ming Poo,et al.  Spontaneous release of transmitter from growth cones of embryonic neurones , 1983, Nature.

[102]  G. Fischbach,et al.  Acetylcholine release from growth cones detected with patches of acetylcholine receptor-rich membranes , 1983, Nature.

[103]  D. A. Brown,et al.  Chemical transmission in the rat interpeduncular nucleus in vitro. , 1983, The Journal of physiology.

[104]  D. K. Berg,et al.  The ultrastructural localization of alpha-bungarotoxin binding sites in relation to synapses on chick ciliary ganglion neurons , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[105]  M. Fauquet,et al.  Acetylcholine synthesis by mesencephalic neural crest cells in the process of migration in vivo , 1979, Nature.

[106]  L. Landmesser,et al.  Interactions between neurons and their targets during in vivo synaptogenesis. , 1978, Federation proceedings.

[107]  R. Ryall,et al.  Substance P and Renshaw cells: a new concept of inhibitory synaptic interactions. , 1977, The Journal of physiology.

[108]  J. N. Langley,et al.  The action of Nicotin on the Ciliary Ganglion and on the endings of the Third Cranial Nerve , 1892, The Journal of physiology.

[109]  L. Role,et al.  Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. , 1995, Annual review of physiology.

[110]  D Colquhoun,et al.  Mechanisms of activation of muscle nicotinic acetylcholine receptors and the time course of endplate currents. , 1995, Annual review of physiology.

[111]  S. Wonnacott,et al.  Presynaptic Nicotinic Autoreceptors and Heteroreceptors in the CNS , 1995 .

[112]  P. Clarke Nicotinic receptors in mammalian brain: localization and relation to cholinergic innervation. , 1993, Progress in brain research.

[113]  P. Sargent,et al.  The diversity of neuronal nicotinic acetylcholine receptors. , 1993, Annual review of neuroscience.

[114]  J. A. Dani,et al.  Functional diversity of neuronal nicotinic acetylcholine receptors. , 1993, Progress in brain research.

[115]  E. Deneris,et al.  Pharmacological and functional diversity of neuronal nicotinic acetylcholine receptors. , 1991, Trends in pharmacological sciences.

[116]  K. Thurau,et al.  Effects of Nicotine on Biological Systems , 1991, APS Advances in Pharmacological Sciences.

[117]  S. Heinemann,et al.  The brain nicotinic acetylcholine receptor gene family. , 1990, Progress in brain research.

[118]  U. Heinemann,et al.  Activity-dependent ionic changes and neuronal plasticity in rat hippocampus. , 1990, Progress in brain research.

[119]  S. Heinemann,et al.  Isolation of a cDNA clone coding for a possible neural nicotinic acetylcholine receptor α-subunit , 1986, Nature.

[120]  M. Noda,et al.  Molecular structure of the nicotinic acetylcholine receptor. , 1983, Cold Spring Harbor symposia on quantitative biology.