A Fractional-Order Discrete Noninvertible Map of Cubic Type: Dynamics, Control, and Synchronization

In this paper, a new fractional-order discrete noninvertible map of cubic type is presented. Firstly, the stability of the equilibrium points for the map is examined. Secondly, the dynamics of the map with two different initial conditions is studied by numerical simulation when a parameter or a derivative order is varied. A series of attractors are displayed in various forms of periodic and chaotic ones. Furthermore, bifurcations with the simultaneous variation of both a parameter and the order are also analyzed in the three-dimensional space. Interior crises are found in the map as a parameter or an order varies. Thirdly, based on the stability theory of fractional-order discrete maps, a stabilization controller is proposed to control the chaos of the map and the asymptotic convergence of the state variables is determined. Finally, the synchronization between the proposed map and a fractional-order discrete Loren map is investigated. Numerical simulations are used to verify the effectiveness of the designed synchronization controllers.

[1]  Dumitru Baleanu,et al.  Discrete chaos in fractional sine and standard maps , 2014 .

[2]  A. E. Matouk,et al.  Dynamical analysis, stabilization and discretization of a chaotic fractional-order GLV model , 2016 .

[3]  Dumitru Baleanu,et al.  Stability analysis of Caputo-like discrete fractional systems , 2017, Commun. Nonlinear Sci. Numer. Simul..

[4]  N. Ayırtman,et al.  Univalent Functions , 1965, Series and Products in the Development of Mathematics.

[5]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[6]  Viet-Thanh Pham,et al.  On fractional–order discrete–time systems: Chaos, stabilization and synchronization , 2019, Chaos, Solitons & Fractals.

[7]  A. Y. T. Leung,et al.  Harmonically Forced Duffing Oscillator with a Linear-Plus-Nonlinear Fractional Feedback Consider a nondimensional , 2014 .

[8]  Christian Mira,et al.  Basin bifurcations of two-dimensional noninvertible maps : Fractalization of basins , 1994 .

[9]  Lu Zhang,et al.  Bifurcation and chaos of a new discrete fractional-order logistic map , 2018, Commun. Nonlinear Sci. Numer. Simul..

[10]  B. Kuttner,et al.  On Differences of Fractional Order , 1957 .

[11]  A. Peterson,et al.  Discrete Fractional Calculus , 2016 .

[12]  Adel Ouannas,et al.  On the dynamics, control and synchronization of fractional-order Ikeda map , 2019, Chaos, Solitons & Fractals.

[13]  Ranchao Wu,et al.  Hopf bifurcation analysis of a new commensurate fractional-order hyperchaotic system , 2014 .

[14]  Daolin Xu,et al.  Chaos synchronization of the Chua system with a fractional order , 2006 .

[15]  Joakim Munkhammar,et al.  Chaos in a fractional order logistic map , 2013 .

[16]  Sohrab Khanmohammadi,et al.  Risk assessment in control of fractional-order coronary artery system in the presence of external disturbance with different proposed controllers , 2019, Appl. Soft Comput..

[17]  Guanrong Chen,et al.  A note on the fractional-order Chen system , 2006 .

[18]  Yong Liu,et al.  Discrete Chaos in Fractional H enon Maps , 2014 .

[19]  M. Hénon,et al.  A two-dimensional mapping with a strange attractor , 1976 .

[20]  Sohrab Khanmohammadi,et al.  Adaptive synchronization of new fractional‐order chaotic systems with fractional adaption laws based on risk analysis , 2019, Mathematical Methods in the Applied Sciences.

[21]  Mohammad Ali Badamchizadeh,et al.  Synchronization of different fractional order chaotic systems with time-varying parameter and orders. , 2018, ISA transactions.

[22]  Hari M. Srivastava,et al.  Univalent Functions, Fractional Calculus, and Their Applications , 1990, The Mathematical Gazette.

[23]  Gilles Bertrand,et al.  On the dynamics , 2007, Image Vis. Comput..

[24]  M. Feigenbaum Quantitative universality for a class of nonlinear transformations , 1978 .

[25]  R. Lozi UN ATTRACTEUR ÉTRANGE (?) DU TYPE ATTRACTEUR DE HÉNON , 1978 .

[26]  YangQuan Chen,et al.  A new collection of real world applications of fractional calculus in science and engineering , 2018, Commun. Nonlinear Sci. Numer. Simul..

[27]  W. Marsden I and J , 2012 .

[28]  Nien Fan Zhang,et al.  On a new definition of the fractional difference , 1988 .

[29]  Robert M. May,et al.  Simple mathematical models with very complicated dynamics , 1976, Nature.

[30]  Giuseppe Grassi,et al.  Bifurcation and Chaos in the fractional-Order Chen System via a Time-Domain Approach , 2008, Int. J. Bifurc. Chaos.

[31]  Hongyong Zhao,et al.  The effect of vaccines on backward bifurcation in a fractional order HIV model , 2015 .

[32]  Ahmed M. A. El-Sayed,et al.  Dynamical Analysis and Circuit Simulation of a New Fractional-Order Hyperchaotic System and Its Discretization , 2016, Int. J. Bifurc. Chaos.

[33]  Qigui Yang,et al.  Chaos and mixed synchronization of a new fractional-order system with one saddle and two stable node-foci , 2011 .

[34]  G. Grassi,et al.  Generalized and inverse generalized synchronization of fractional-order discrete-time chaotic systems with non-identical dimensions , 2018, Advances in Difference Equations.

[35]  Dumitru Baleanu,et al.  Discrete chaos in fractional delayed logistic maps , 2015 .

[36]  Thabet Abdeljawad,et al.  On Riemann and Caputo fractional differences , 2011, Comput. Math. Appl..

[37]  Xin Wu,et al.  Fractional-order sliding mode control for hybrid drive wind power generation system with disturbances in the grid , 2018, Wind Energy.

[38]  Hidetsugu Sakaguchi,et al.  Bifurcations of the Coupled Logistic Map , 1987 .

[39]  Maamar Bettayeb,et al.  A new contribution for the impulsive synchronization of fractional-order discrete-time chaotic systems , 2017 .

[40]  D. Fournier-Prunaret,et al.  Security performances of a chaotic cryptosystem , 2004, 2004 IEEE International Symposium on Industrial Electronics.

[41]  J. Cermák,et al.  On explicit stability conditions for a linear fractional difference system , 2015 .