Optimal electrode selection for multi-channel electroencephalogram based detection of auditory steady-state responses.

Auditory steady-state responses (ASSRs) are used for hearing threshold estimation at audiometric frequencies. Hearing impaired newborns, in particular, benefit from this technique as it allows for a more precise diagnosis than traditional techniques, and a hearing aid can be better fitted at an early age. However, measurement duration of current single-channel techniques is still too long for clinical widespread use. This paper evaluates the practical performance of a multi-channel electroencephalogram (EEG) processing strategy based on a detection theory approach. A minimum electrode set is determined for ASSRs with frequencies between 80 and 110 Hz using eight-channel EEG measurements of ten normal-hearing adults. This set provides a near-optimal hearing threshold estimate for all subjects and improves response detection significantly for EEG data with numerous artifacts. Multi-channel processing does not significantly improve response detection for EEG data with few artifacts. In this case, best response detection is obtained when noise-weighted averaging is applied on single-channel data. The same test setup (eight channels, ten normal-hearing subjects) is also used to determine a minimum electrode setup for 10-Hz ASSRs. This configuration allows to record near-optimal signal-to-noise ratios for 80% of subjects.

[1]  Jan Wouters,et al.  Hearing assessment by recording multiple auditory steady-state responses: the influence of test duration , 2004, International journal of audiology.

[2]  A. Dimitrijevic,et al.  Efficient Stimuli for Evoking Auditory Steady-State Responses , 2003, Ear and hearing.

[3]  O. Lins,et al.  Comparison of Statistical Indicators for the Automatic Detection of 80 Hz Auditory Steady State Responses , 1997, Ear and hearing.

[4]  S. Kuwada,et al.  Optimizing the Stimuli to Evoke the Amplitude Modulation Following Response (AMFR) in Neonates , 2006, Ear and hearing.

[5]  M. Cebulla,et al.  Efficient Stimuli for Recording of the Amplitude Modulation Following Response: Estímulos eficientes para el registro de la Respuesta de Seguimiento a la Modulación de la Amplitud (AMFR) , 2001, Audiology : official organ of the International Society of Audiology.

[6]  T. Picton,et al.  Human Cortical Responses to the Speech Envelope , 2008, Ear and hearing.

[7]  Shigeyuki Kuwada,et al.  Sources of the scalp-recorded amplitude-modulation following response. , 2002, Journal of the American Academy of Audiology.

[8]  M. Scherg,et al.  Intracerebral Sources of Human Auditory Steady-State Responses , 2004, Brain Topography.

[9]  Terence W. Picton,et al.  Multiple Auditory Steady-State Responses to AM and FM Stimuli , 2001, Audiology and Neurotology.

[10]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[11]  G M Clark,et al.  A comparison of steady-state evoked potentials to modulated tones in awake and sleeping humans. , 1991, The Journal of the Acoustical Society of America.

[12]  C S van der Reijden,et al.  Comparing Signal to Noise Ratios of Amplitude Modulation Following Responses from four EEG Derivations in Awake Normally Hearing Adults: Comparando tasas señal/ruido para modulación de amplitud en seguimiento a respuestas de cuatro derivaciones del EEG en adultos normo-oyentes despiertos , 2001, Audiology : official organ of the International Society of Audiology.

[13]  T W Picton,et al.  Objective evaluation of aided thresholds using auditory steady-state responses. , 1998, Journal of the American Academy of Audiology.

[14]  Mario Cebulla,et al.  Objective detection of auditory steady-state responses: comparison of one-sample and q-sample tests. , 2006, Journal of the American Academy of Audiology.

[15]  R. Plomp,et al.  Effect of reducing slow temporal modulations on speech reception. , 1994, The Journal of the Acoustical Society of America.

[16]  Lucas H M Mens,et al.  EEG Derivations Providing Auditory Steady-State Responses With High Signal-to-Noise Ratios in Infants , 2005, Ear and hearing.

[17]  Terence W Picton,et al.  Auditory Steady-State Responses to Exponential Modulation Envelopes , 2002, Ear and hearing.

[18]  M. S. John,et al.  MASTER: a Windows program for recording multiple auditory steady-state responses , 2000, Comput. Methods Programs Biomed..

[19]  Jan Wouters,et al.  Cortical auditory steady-state responses to low modulation rates , 2009, International journal of audiology.

[20]  S. Makeig,et al.  A 40-Hz auditory potential recorded from the human scalp. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Susan A Small,et al.  Normal Ipsilateral/Contralateral Asymmetries in Infant Multiple Auditory Steady-State Responses to Air- and Bone-Conduction Stimuli , 2008, Ear and hearing.

[22]  Marc Moonen,et al.  A Procedural Framework for Auditory Steady-State Response Detection , 2009, IEEE Transactions on Biomedical Engineering.

[23]  Marc Moonen,et al.  Multi-Channel Wiener Filtering Based Auditory Steady-State Response Detection , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[24]  R. Plomp,et al.  Effect of temporal envelope smearing on speech reception. , 1994, The Journal of the Acoustical Society of America.

[25]  T W Picton,et al.  Potentials evoked by the sinusoidal modulation of the amplitude or frequency of a tone. , 1987, The Journal of the Acoustical Society of America.

[26]  K. Saberi,et al.  Cognitive restoration of reversed speech , 1999, Nature.

[27]  Mario Cebulla,et al.  New efficient stimuli for evoking frequency-specific auditory steady-state responses. , 2006, Journal of the American Academy of Audiology.

[28]  R V Shannon,et al.  Speech Recognition with Primarily Temporal Cues , 1995, Science.

[29]  R A Dobie,et al.  A comparison of t test, F test, and coherence methods of detecting steady-state auditory-evoked potentials, distortion-product otoacoustic emissions, or other sinusoids. , 1996, The Journal of the Acoustical Society of America.

[30]  Jeffrey Martin,et al.  Electrophysiological correlates of word comprehension: Event-related potential (ERP) and independent component analysis (ICA) , 2009, International journal of audiology.

[31]  James W. Hall Handbook of Auditory Evoked Responses , 1991 .

[32]  Terence W Picton,et al.  Weighted averaging of steady-state responses , 2001, Clinical Neurophysiology.

[33]  Terence W. Picton,et al.  Auditory steady-state responses to multiple simultaneous stimuli , 1995 .

[34]  M. Cebulla,et al.  Objective Detection of the Amplitude Modulation Following Response (AMFR):Detectión objetiva de la respuesta consecuente de amplitud modulada (AMFR) , 2001, Audiology : official organ of the International Society of Audiology.

[35]  T. Picton,et al.  Human auditory steady-state responses: Respuestas auditivas de estado estable en humanos , 2003, International journal of audiology.

[36]  Robert Plonsey,et al.  Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields , 1995 .

[37]  Terence W Picton,et al.  Human temporal auditory acuity as assessed by envelope following responses. , 2004, The Journal of the Acoustical Society of America.

[38]  A. Herdman,et al.  Thresholds determined using the monotic and dichotic multiple auditory steady-state response technique in normal-hearing subjects , 2001, Scandinavian audiology.

[39]  Marc Moonen,et al.  Improving Auditory Steady-State Response Detection Using Independent Component Analysis on Multichannel EEG Data , 2007, IEEE Transactions on Biomedical Engineering.

[40]  Joerg Bitzer,et al.  Post-Filtering Techniques , 2001, Microphone Arrays.

[41]  Astrid van Wieringen,et al.  LIST and LINT: Sentences and numbers for quantifying speech understanding in severely impaired listeners for Flanders and the Netherlands , 2008, International journal of audiology.

[42]  Jan Wouters,et al.  The Influence of the Detection Paradigm in Recording Auditory Steady-State Responses , 2008, Ear and hearing.

[43]  L. Scharf,et al.  Statistical Signal Processing: Detection, Estimation, and Time Series Analysis , 1991 .

[44]  Heleen Luts,et al.  A flexible research platform for multi-channel auditory steady-state response measurements , 2008, Journal of Neuroscience Methods.

[45]  Heleen Luts,et al.  Comparison of MASTER and AUDERA for measurement of auditory steady-state responses Comparación de MASTER y AUDERA para la medición de las respuestas auditivas de estado estable , 2005, International journal of audiology.

[46]  C. S. van der Reijden,et al.  Signal-to-noise ratios of the auditory steady-state response from fifty-five EEG derivations in adults. , 2004, Journal of the American Academy of Audiology.

[47]  Jan Wouters,et al.  Clinical Application of Dichotic Multiple-Stimulus Auditory Steady-State Responses in High-Risk Newborns and Young Children , 2006, Audiology and Neurotology.

[48]  Terence W Picton,et al.  Estimating the audiogram using multiple auditory steady-state responses. , 2002, Journal of the American Academy of Audiology.

[49]  Don H. Johnson,et al.  Array Signal Processing: Concepts and Techniques , 1993 .