A Fully Discrete Semi-Lagrangian Scheme for a First Order Mean Field Game Problem

In this work we propose a fully discrete semi-Lagrangian scheme for a first order mean field game system. We prove that the resulting discretization admits at least one solution and, in the scalar case, we prove a convergence result for the scheme. Numerical simulations and examples are also discussed.

[1]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[2]  Michel Rascle,et al.  Measure solutions to the linear multi-dimensional transport equation with non-smooth coefficients , 1997 .

[3]  P. Lions,et al.  Jeux à champ moyen. I – Le cas stationnaire , 2006 .

[4]  P. Lions,et al.  Mean field games , 2007 .

[5]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[6]  M. Falcone,et al.  Convergence of a large time-step scheme for mean curvature motion , 2010 .

[7]  Yves Achdou,et al.  Mean Field Games: Convergence of a Finite Difference Method , 2012, SIAM J. Numer. Anal..

[8]  Yves Achdou,et al.  Mean Field Games: Numerical Methods , 2010, SIAM J. Numer. Anal..

[9]  Paolo Frasca,et al.  Existence and approximation of probability measure solutions to models of collective behaviors , 2010, Networks Heterog. Media.

[10]  R. Aumann Markets with a continuum of traders , 1964 .

[11]  M. Falcone,et al.  Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations , 2014 .

[12]  B. Piccoli,et al.  Time-Evolving Measures and Macroscopic Modeling of Pedestrian Flow , 2008, 0811.3383.

[13]  Chi-Tien Lin,et al.  $L^1$-Stability and error estimates for approximate Hamilton-Jacobi solutions , 2001, Numerische Mathematik.

[14]  Marie-Therese Wolfram,et al.  On a mean field game approach modeling congestion and aversion in pedestrian crowds , 2011 .

[15]  P. Cannarsa,et al.  Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control , 2004 .

[16]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[17]  G. Barles,et al.  Convergence of approximation schemes for fully nonlinear second order equations , 1990, 29th IEEE Conference on Decision and Control.

[18]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[19]  Olivier Gu'eant,et al.  Mean field games equations with quadratic Hamiltonian: a specific approach , 2011, 1106.3269.

[20]  Laurent Gosse,et al.  Convergence results for an inhomogeneous system arising in various high frequency approximations , 2002, Numerische Mathematik.

[21]  Olivier Guéant,et al.  Mean Field Games and Applications , 2011 .

[22]  Zdzisław Denkowski,et al.  Set-Valued Analysis , 2021 .

[23]  P. Lions,et al.  Jeux à champ moyen. II – Horizon fini et contrôle optimal , 2006 .

[24]  Jules Michelet,et al.  Cours au Collège de France , 1995 .

[25]  Yves Achdou,et al.  Mean Field Games: Numerical Methods for the Planning Problem , 2012, SIAM J. Control. Optim..