A Fully Discrete Semi-Lagrangian Scheme for a First Order Mean Field Game Problem
暂无分享,去创建一个
[1] Ronald Fedkiw,et al. Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.
[2] Michel Rascle,et al. Measure solutions to the linear multi-dimensional transport equation with non-smooth coefficients , 1997 .
[3] P. Lions,et al. Jeux à champ moyen. I – Le cas stationnaire , 2006 .
[4] P. Lions,et al. Mean field games , 2007 .
[5] M. Bardi,et al. Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .
[6] M. Falcone,et al. Convergence of a large time-step scheme for mean curvature motion , 2010 .
[7] Yves Achdou,et al. Mean Field Games: Convergence of a Finite Difference Method , 2012, SIAM J. Numer. Anal..
[8] Yves Achdou,et al. Mean Field Games: Numerical Methods , 2010, SIAM J. Numer. Anal..
[9] Paolo Frasca,et al. Existence and approximation of probability measure solutions to models of collective behaviors , 2010, Networks Heterog. Media.
[10] R. Aumann. Markets with a continuum of traders , 1964 .
[11] M. Falcone,et al. Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations , 2014 .
[12] B. Piccoli,et al. Time-Evolving Measures and Macroscopic Modeling of Pedestrian Flow , 2008, 0811.3383.
[13] Chi-Tien Lin,et al. $L^1$-Stability and error estimates for approximate Hamilton-Jacobi solutions , 2001, Numerische Mathematik.
[14] Marie-Therese Wolfram,et al. On a mean field game approach modeling congestion and aversion in pedestrian crowds , 2011 .
[15] P. Cannarsa,et al. Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control , 2004 .
[16] L. Ambrosio,et al. Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .
[17] G. Barles,et al. Convergence of approximation schemes for fully nonlinear second order equations , 1990, 29th IEEE Conference on Decision and Control.
[18] James A. Sethian,et al. Level Set Methods and Fast Marching Methods , 1999 .
[19] Olivier Gu'eant,et al. Mean field games equations with quadratic Hamiltonian: a specific approach , 2011, 1106.3269.
[20] Laurent Gosse,et al. Convergence results for an inhomogeneous system arising in various high frequency approximations , 2002, Numerische Mathematik.
[21] Olivier Guéant,et al. Mean Field Games and Applications , 2011 .
[22] Zdzisław Denkowski,et al. Set-Valued Analysis , 2021 .
[23] P. Lions,et al. Jeux à champ moyen. II – Horizon fini et contrôle optimal , 2006 .
[24] Jules Michelet,et al. Cours au Collège de France , 1995 .
[25] Yves Achdou,et al. Mean Field Games: Numerical Methods for the Planning Problem , 2012, SIAM J. Control. Optim..