Nodal high-order methods on unstructured grids

We present a convergent high-order accurate scheme for the solution of linear conservation laws in geometrically complex domains. As our main example we include a detailed development and analysis of a scheme for the time-domain solution of Maxwell's equations in a three-dimensional domain. The fully unstructured spatial discretization is made possible by the use of a high-order nodal basis, employing multivariate Lagrange polynomials defined on the triangles and tetrahedra, while the equations themselves are satisfied in a discontinuous Galerkin form with the boundary conditions being enforced weakly through a penalty term. Accuracy, stability, and convergence of the semidiscrete approximation to Maxwell's equations is established rigorously and bounds on the growth of the global divergence error are provided. Concerns related to efficient implementations are discussed in detail. This sets the stage for the presentation of examples, verifying the theoretical results, and illustrating the versatility, flexibility, and robustness when solving two- and three-dimensional benchmark problems in computational electromagnetics. Pure scattering as well as penetration is discussed and high parallel performance of the scheme is demonstrated.

[1]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[2]  T. Senior,et al.  Electromagnetic and Acoustic Scattering by Simple Shapes , 1969 .

[3]  H. Kreiss,et al.  Comparison of accurate methods for the integration of hyperbolic equations , 1972 .

[4]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[5]  T. Koornwinder Two-Variable Analogues of the Classical Orthogonal Polynomials , 1975 .

[6]  I. Babuska,et al.  ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .

[7]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .

[8]  D. Kopriva A spectral multidomain method for the solution of hyperbolic systems , 1986 .

[9]  Anthony T. Patera,et al.  An isoparametric spectral element method for solution of the Navier-Stokes equations in complex geometry , 1986 .

[10]  Ivo Babuška,et al.  The h-p version of the finite element method , 1986 .

[11]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[12]  David A. Kopriva,et al.  Computation of hyperbolic equations on complicated domains with patched and overset Chebyshev grids , 1989 .

[13]  Alfio Quarteroni,et al.  Domain Decomposition Methods for Systems of Conservation Laws: Spectral Collocation Approximations , 1990, SIAM J. Sci. Comput..

[14]  S. C. Hill,et al.  Light Scattering by Particles: Computational Methods , 1990 .

[15]  Moshe Dubiner Spectral methods on triangles and other domains , 1991 .

[16]  David A. Kopriva,et al.  Multidomain spectral solution of the Euler Gas-dynamics equations , 1991 .

[17]  Vijaya Shankar,et al.  Computation of electromagnetic scattering and radiation using a time-domain finite-volume discretization procedure , 1991 .

[18]  M. J. Schuh,et al.  EM programmer's notebook-benchmark plate radar targets for the validation of computational electroma , 1992 .

[19]  R. Cools,et al.  Monomial cubature rules since “Stroud”: a compilation , 1993 .

[20]  A. C. Woo,et al.  Benchmark radar targets for the validation of computational electromagnetics programs , 1993 .

[21]  George Em Karniadakis,et al.  A spectral element-FCT method for the compressible Euler equations , 1994 .

[22]  J. Flaherty,et al.  Parallel, adaptive finite element methods for conservation laws , 1994 .

[23]  Ivo Babuška,et al.  The optimal symmetrical points for polynomial interpolation of real functions in the tetrahedron , 1995 .

[24]  David Gottlieb,et al.  Spectral Methods on Arbitrary Grids , 1995 .

[25]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[26]  George Em Karniadakis,et al.  A NEW TRIANGULAR AND TETRAHEDRAL BASIS FOR HIGH-ORDER (HP) FINITE ELEMENT METHODS , 1995 .

[27]  George Em Karniadakis,et al.  TetrahedralhpFinite Elements , 1996 .

[28]  Jack Dongarra,et al.  MPI: The Complete Reference , 1996 .

[29]  Harold L. Atkins,et al.  QUADRATURE-FREE IMPLEMENTATION OF DISCONTINUOUS GALERKIN METHOD FOR HYPERBOLIC EQUATIONS , 1996 .

[30]  Jan S. Hesthaven,et al.  Spectral Simulations of Electromagnetic Wave Scattering , 1997 .

[31]  Jan S. Hesthaven,et al.  A Stable Penalty Method for the Compressible Navier-Stokes Equations: II. One-Dimensional Domain Decomposition Schemes , 1997, SIAM J. Sci. Comput..

[32]  George Karypis,et al.  Multilevel k-way Partitioning Scheme for Irregular Graphs , 1998, J. Parallel Distributed Comput..

[33]  George Em Karniadakis,et al.  Spectral/hp Methods for Viscous Compressible Flows on Unstructured 2D Meshes , 1998 .

[34]  Claes Johnson,et al.  Adaptive finite element methods for conservation laws , 1998 .

[35]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[36]  David Gottlieb,et al.  On the construction and analysis of absorbing layers in CEM , 1998 .

[37]  Jan S. Hesthaven,et al.  Stable spectral methods for conservation laws on triangles with unstructured grids , 1999 .

[38]  Jan S. Hesthaven,et al.  A pseudospectral method for time-domain computation of electromagnetic scattering by bodies of revolution , 1999 .

[39]  George Em Karniadakis,et al.  Galerkin and discontinuous Galerkin spectral/hp methods , 1999 .

[40]  George Em Karniadakis,et al.  A Discontinuous Galerkin Method for the Viscous MHD Equations , 1999 .

[41]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[42]  Jan S. Hesthaven,et al.  Regular Article: Spectral Collocation Time-Domain Modeling of Diffractive Optical Elements , 1999 .

[43]  R. Cools Monomial cubature rules since “Stroud”: a compilation—part 2 , 1999 .

[44]  Jan S. Hesthaven,et al.  Multidomain pseudospectral computation of Maxwell's equations in 3-D general curvilinear coordinates , 2000 .

[45]  D. Kopriva,et al.  Discontinuous Spectral Element Approximation of Maxwell’s Equations , 2000 .

[46]  Jan S. Hesthaven,et al.  Stable Spectral Methods on Tetrahedral Elements , 1999, SIAM J. Sci. Comput..

[47]  Jan S. Hesthaven,et al.  Spectral penalty methods , 2000 .

[48]  J. Hesthaven,et al.  Convergent Cartesian Grid Methods for Maxwell's Equations in Complex Geometries , 2001 .

[49]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[50]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .