TIMES. I. A Systematic Observation in Multiple Molecular Lines toward the Orion A and Ophiuchus Clouds
暂无分享,去创建一个
N. Evans | M. Heyer | Jeong-Eun Lee | S. Offner | Minho Choi | K. Tatematsu | Jungyeon Cho | Youngung Lee | C. Lee | How-Huan Chen | Seokho Lee | B. Gaches | Giseon Baek | J. Jung | Hyeong-Sik Yun | Yong-Hee Lee | Yunhee Choi | Yao-Lun Yang | Hyun-Sil Kang | H. Yun | Yao-lun Yang
[1] K. Knudsen,et al. VALES VI: ISM enrichment in star-forming galaxies up to z ∼ 0.2 using 12CO(1–0), 13CO(1–0), and C18O(1–0) line luminosity ratios , 2020, Monthly notices of the Royal Astronomical Society.
[2] N. Evans,et al. Star Formation Occurs in Dense Gas, but What Does “Dense” Mean? , 2020, The Astrophysical Journal.
[3] S. Okumura,et al. Nobeyama 45 m mapping observations toward the nearby molecular clouds Orion A, Aquila Rift, and M17: Project overview , 2019, Publications of the Astronomical Society of Japan.
[4] A. Goodman,et al. Droplets. I. Pressure-dominated Coherent Structures in L1688 and B18 , 2018, The Astrophysical Journal.
[5] M. Lombardi,et al. 3D shape of Orion A from Gaia DR2 , 2018, Astronomy & Astrophysics.
[6] A. Goodman,et al. Dense Gas Kinematics and a Narrow Filament in the Orion A OMC1 Region Using NH3 , 2018, The Astrophysical Journal.
[7] E. Feigelson,et al. The APOGEE-2 Survey of the Orion Star-forming Complex. II. Six-dimensional Structure , 2018, The Astronomical Journal.
[8] Peter G. Martin,et al. The Green Bank Ammonia Survey: Dense Cores under Pressure in Orion A , 2017, 1708.05426.
[9] Jason L. Loeppky,et al. Identifying tools for comparing simulations and observations of spectral-line data cubes , 2017, 1707.05415.
[10] U. Chile,et al. Molecular Line Emission as a Tool for Galaxy Observations (LEGO). I. HCN as a tracer of moderate gas densities in molecular clouds and galaxies , 2017, 1707.05352.
[11] S. Bontemps,et al. Testing the universality of the star formation efficiency in dense molecular gas , 2017, 1705.00213.
[12] A. Goodman,et al. The Green Bank Ammonia Survey: First Results of NH3 Mapping of the Gould Belt , 2017, 1704.06318.
[13] E. Bergin,et al. Large-scale Spectroscopic Mapping of the ρ Ophiuchi Molecular Cloud Complex. I. The C2H-to-N2H+ Ratio as a Signpost of Cloud Characteristics , 2017, 1702.04857.
[14] C. Kramer,et al. 13CO/C18O Gradients across the Disks of Nearby Spiral Galaxies , 2017, 1701.01734.
[15] L. Hartmann,et al. THE GOULD’S BELT DISTANCES SURVEY (GOBELINS). I. TRIGONOMETRIC PARALLAX DISTANCES AND DEPTH OF THE OPHIUCHUS COMPLEX , 2016, 1611.06466.
[16] Maryvonne Gerin,et al. The anatomy of the Orion B Giant Molecular Cloud: A local template for studies of nearby galaxies , 2016, 1611.04037.
[17] L. Mundy,et al. CARMA LARGE AREA STAR FORMATION SURVEY: DENSE GAS IN THE YOUNG L1451 REGION OF PERSEUS , 2016, 1606.08852.
[18] E. Rosolowsky,et al. The JCMT Gould Belt Survey: a first look at Southern Orion A with SCUBA-2 , 2016, 1606.08854.
[19] S. T. Megeath,et al. THE HERSCHEL ORION PROTOSTAR SURVEY: SPECTRAL ENERGY DISTRIBUTIONS AND FITS USING A GRID OF PROTOSTELLAR MODELS , 2016, 1602.07314.
[20] M. Lombardi,et al. VISION − Vienna survey in Orion - I. VISTA Orion A Survey , 2016, 1601.01687.
[21] A. Belloche,et al. Deuterium Fractionation in the Ophiuchus Molecular Cloud , 2015, 1512.02986.
[22] D. Johnstone,et al. YOUNG STELLAR OBJECTS IN THE GOULD BELT , 2015, 1508.03199.
[23] E. Rosolowsky,et al. The JCMT Gould Belt Survey: first results from the SCUBA-2 observations of the Ophiuchus molecular cloud and a virial analysis of its prestellar core population , 2015, 1502.05858.
[24] L. Mundy,et al. CARMA LARGE AREA STAR FORMATION SURVEY: PROJECT OVERVIEW WITH ANALYSIS OF DENSE GAS STRUCTURE AND KINEMATICS IN BARNARD 1 , 2014, 1409.1233.
[25] E. Rosolowsky,et al. ASTROCHEMICAL CORRELATIONS IN MOLECULAR CLOUDS , 2014, 1412.2754.
[26] R. Kawabe,et al. High abundance ratio of 13CO to C18O toward photon-dominated regions in the Orion-A giant molecular cloud , 2014, 1403.2930.
[27] C. Brunt,et al. Principal component analysis of spectral line data: analytic formulation , 2013, 1305.5071.
[28] S. Bianchi. Vindicating single-T modified blackbody fits to Herschel SEDs , 2013, 1302.5699.
[29] R. Snell,et al. CO abundance variations in the Orion Molecular Cloud , 2013, 1302.2679.
[30] P. Andre',et al. CHANGES OF DUST OPACITY WITH DENSITY IN THE ORION A MOLECULAR CLOUD , 2012, 1211.6475.
[31] K. Flaherty,et al. THE SPITZER SPACE TELESCOPE SURVEY OF THE ORION A AND B MOLECULAR CLOUDS. I. A CENSUS OF DUSTY YOUNG STELLAR OBJECTS AND A STUDY OF THEIR MID-INFRARED VARIABILITY , 2012, 1209.3826.
[32] Zhi-Yun Li,et al. EVIDENCE FOR CLOUD–CLOUD COLLISION AND PARSEC-SCALE STELLAR FEEDBACK WITHIN THE L1641-N REGION , 2011, 1110.6225.
[33] K. Dobashi. Atlas and Catalog of Dark Clouds Based on the 2 Micron All Sky Survey , 2011 .
[34] J. Austermann,et al. New Panoramic View of 12CO and 1.1 mm Continuum Emission in the Orion A Giant Molecular Cloud. I. Survey Overview and Possible External Triggers of Star Formation , 2010, 1010.3498.
[35] H. Roussel,et al. From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the Herschel Gould Belt survey , 2010, 1005.2618.
[36] M. Juvela,et al. THE POWER SPECTRUM OF TURBULENCE IN NGC 1333: OUTFLOWS OR LARGE-SCALE DRIVING? , 2009, 0910.1384.
[37] Hongchi Wang,et al. OUTFLOWS IN ρ OPHIUCHI AS SEEN WITH THE SPITZER INFRARED ARRAY CAMERA , 2009, 0910.0540.
[38] C. Brunt,et al. Turbulent Driving Scales in Molecular Clouds , 2009, 0910.0398.
[39] K. Sunada,et al. A Survey of Dense Cores in the Orion A Cloud , 2009 .
[40] P. Lucas,et al. A census of molecular hydrogen outflows and their sources along the Orion A molecular ridge - Characteristics and overall distribution , 2008, 0812.3733.
[41] G. Kowal,et al. DENSITY STUDIES OF MHD INTERSTELLAR TURBULENCE: STATISTICAL MOMENTS, CORRELATIONS AND BISPECTRUM , 2008, 0811.0822.
[42] A. Goodman,et al. THE “TRUE” COLUMN DENSITY DISTRIBUTION IN STAR-FORMING MOLECULAR CLOUDS , 2008, 0806.3441.
[43] Y. Sekimoto,et al. N2H+ and HC3N Observations of the Orion A Cloud , 2008, 0804.0111.
[44] R. Neri,et al. A Multi-Transition HCN and HCO+ Study of 12 Nearby Active Galaxies: Active Galactic Nucleus versus Starburst Environments , 2007, 0712.0319.
[45] E. Bergin,et al. Cold Dark Clouds: The Initial Conditions for Star Formation , 2007, 0705.3765.
[46] M. Juvela,et al. The Power Spectrum of Supersonic Turbulence in Perseus , 2006, astro-ph/0611248.
[47] L. Hartmann,et al. On the Structure of the Orion A Cloud and the Formation of the Orion Nebula Cluster , 2006, astro-ph/0609679.
[48] G. Kowal,et al. Density Fluctuations in MHD Turbulence: Spectra, Intermittency, and Topology , 2006, astro-ph/0608051.
[49] M. Lombardi,et al. The COMPLETE Survey of Star-Forming Regions: Phase I Data , 2006, astro-ph/0602542.
[50] C. Brunt,et al. The Universality of Turbulence in Galactic Molecular Clouds , 2004, astro-ph/0409420.
[51] E. Bergin,et al. Evolution of Chemistry and Molecular Line Profiles during Protostellar Collapse , 2004, astro-ph/0408091.
[52] D. Johnstone,et al. An Extinction Threshold for Protostellar Cores in Ophiuchus , 2004, astro-ph/0406640.
[53] D. O. Astronomy,et al. Interstellar Turbulence I: Observations and Processes , 2004, astro-ph/0404451.
[54] Jeong-Eun Lee,et al. Chemistry and Dynamics in Pre-protostellar Cores , 2002, astro-ph/0212178.
[55] E. Herbst,et al. Molecular Evolution in Collapsing Prestellar Cores , 2001, astro-ph/0202061.
[56] V. Ossenkopf,et al. Turbulent velocity structure in molecular clouds , 2000, astro-ph/0012247.
[57] M. Juvela,et al. The Turbulent Shock Origin of Proto-Stellar Cores , 2000, astro-ph/0011122.
[58] R. Klessen,et al. Control of star formation by supersonic turbulence , 2000, astro-ph/0301093.
[59] R. Klessen. One-Point Probability Distribution Functions of Supersonic Turbulent Flows in Self-gravitating Media , 2000, astro-ph/0001379.
[60] P. Caselli,et al. CO Depletion in the Starless Cloud Core L1544 , 1999 .
[61] M. Juvela,et al. Supersonic Turbulence in the Perseus Molecular Cloud , 1999, astro-ph/9905383.
[62] N. Evans. Physical conditions in regions of star formation , 1999, astro-ph/9905050.
[63] A. Goodman,et al. Coherence in Dense Cores. II. The Transition to Coherence , 1998 .
[64] Y. Fukui,et al. A Spatially Complete 13CO J = 1-0 Survey of the Orion A Cloud , 1998 .
[65] E. Bergin,et al. Chemical Evolution in Preprotostellar and Protostellar Cores , 1997 .
[66] E. Bergin,et al. Chemical and Physical Gradients along the OMC-1 Ridge , 1997, The Astrophysical journal.
[67] M. Heyer,et al. Application of Principal Component Analysis to Large-Scale Spectral Line Imaging Studies of the Interstellar Medium , 1997 .
[68] G. Blake,et al. Molecular Abundances and Low-Mass Star Formation. II. Organic and Deuterated Species toward IRAS 16293-2422 , 1995 .
[69] M. Hayashi,et al. Molecular Cloud Cores in the Orion A Cloud. I. Nobeyama CS (1--0) Survey , 1993 .
[70] F. Schloerb,et al. EVIDENCE FOR LARGE-SCALE EXPANDING MOTIONS WITHIN THE ORION A MOLECULAR CLOUD , 1992 .
[71] T. Wilson,et al. Abundances in the interstellar medium , 1992 .
[72] R. Henriksen,et al. A first use of wavelet analysis for molecular clouds , 1990 .
[73] A. Wootten,et al. Cold DCO(+) cores and protostars in the warm Rho Ophiuchi cloud , 1990 .
[74] A. R. Rivolo,et al. Mass, luminosity, and line width relations of Galactic molecular clouds , 1987 .
[75] R. Wilson,et al. Filamentary structure in the Orion molecular cloud , 1986 .
[76] M. Morris,et al. The large system of molecular clouds in Orion and Monoceros , 1986 .
[77] H. Hirabayashi,et al. CS around Orion-KL: A large rotating disk , 1984 .
[78] C. Lada,et al. /sup 13/CO self-absorption in the rho Ophiuchi dark cloud , 1980 .
[79] R. Larson. Turbulence and star formation in molecular clouds , 1980 .
[80] T. Phillips,et al. Evidence for optically thin CO emission from the Kleinmann-Low nebula , 1977 .
[81] G. Chin,et al. The molecular complexes in Orion , 1977 .
[82] B. T. Lynds. Catalogue of Dark Nebulae. , 1962 .
[83] H. Olofsson,et al. Onsala high spatial resolution observations of HCN, HCO+, and their isotopes in Orion A and S 140. , 1980 .