Self‐induced growth of GaN nanowires by molecular beam epitaxy: A critical review of the formation mechanisms

GaN nanowires, also called nanocolumns, have emerged over the last decade as promising nanosized building blocks for a wide variety of optoelectronic devices. In contrast to other III–V semiconductors, GaN nanowires have the ability to grow catalyst‐free within the self‐induced approach by plasma‐assisted molecular beam epitaxy, which does not require the use of any foreign materials or patterned substrate. The self‐induced growth has accordingly been considered as a valuable growth mode to form GaN nanowires on a wide number of substrates such as Si, Al2O3, diamond or SiC. The formation mechanisms have extensively been investigated and are specifically reviewed here from the very onset of the nucleation phase through the elongation phase to the coalescence process. A general approach of the self‐induced growth of GaN nanowires is gained. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  M. Tabe,et al.  Initial stages of nitridation of Si(111) surfaces: X-ray photoelectron spectroscopy and scanning tunneling microscopy studies , 1997 .

[2]  M. Mori,et al.  Growth of Self-Organized GaN Nanostructures on Al2O3(0001) by RF-Radical Source Molecular Beam Epitaxy , 1997 .

[3]  R. Beresford,et al.  The effect of the III/V ratio and substrate temperature on the morphology and properties of GaN- and AlN-layers grown by molecular beam epitaxy on Si(1 1 1) , 1998 .

[4]  M. Yoshizawa,et al.  Self-organization of GaN/Al0.18Ga0.82N multi-layer nano-columns on (0 0 0 1) Al2O3 by RF molecular beam epitaxy for fabricating GaN quantum disks , 1998 .

[5]  F. Calle,et al.  Growth of III-nitrides on Si(1 1 1) by molecular beam epitaxy: Doping, optical, and electrical properties , 1999 .

[6]  F. Calle,et al.  Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy , 2000 .

[7]  Andrew G. Glen,et al.  APPL , 2001 .

[8]  N. Cue,et al.  Nitridation of Si(111) , 2001 .

[9]  Kelly P. Knutsen,et al.  Single gallium nitride nanowire lasers , 2002, Nature materials.

[10]  Claudia Wu,et al.  Thermal nitridation of the Si(111)-(7×7) surface studied by scanning tunneling microscopy and spectroscopy , 2002 .

[11]  D. Kim,et al.  Growth and characterization of single-crystal GaN nanorods by hydride vapor phase epitaxy , 2002 .

[12]  L. Tu,et al.  Self-assembled vertical GaN nanorods grown by molecular-beam epitaxy , 2003 .

[13]  K. Kishino,et al.  InGaN/GaN Multiple Quantum Disk Nanocolumn Light-Emitting Diodes Grown on (111) Si Substrate , 2004 .

[14]  L. Samuelson,et al.  Mass transport model for semiconductor nanowire growth. , 2005, The journal of physical chemistry. B.

[15]  Charles M. Lieber,et al.  GaN nanowire lasers with low lasing thresholds , 2005 .

[16]  Seung-Ho Lee,et al.  Self-assembled GaN nano-rods grown directly on (111) Si substrates : Dependence on growth conditions , 2005 .

[17]  Joy M. Barker,et al.  Spontaneously grown GaN and AlGaN nanowires , 2006 .

[18]  S. Gwo,et al.  Structure and photoluminescence properties of epitaxially oriented GaN nanorods grown on Si(111) by plasma-assisted molecular-beam epitaxy , 2006 .

[19]  H. Lüth,et al.  GaN-nanowhiskers: MBE-growth conditions and optical properties , 2006 .

[20]  C. E. Stutz,et al.  Molecular beam epitaxial growth of high-quality GaN nanocolumns , 2006 .

[21]  J. Ristić,et al.  Wurtzite GaN nanocolumns grown on Si(001) by molecular beam epitaxy , 2006 .

[22]  A. Griol,et al.  Growth, morphology, and structural properties of group‐III‐nitride nanocolumns and nanodisks , 2007 .

[23]  Kuei-Hsien Chen,et al.  Ultrahigh photocurrent gain in m-axial GaN nanowires , 2007 .

[24]  H. Lüth,et al.  Nucleation and growth of GaN nanowires on Si(111) performed by molecular beam epitaxy. , 2007, Nano letters.

[25]  G. Patriarche,et al.  Growth of GaN free-standing nanowires by plasma-assisted molecular beam epitaxy: structural and optical characterization , 2007 .

[26]  K. Bertness,et al.  Nucleation conditions for catalyst-free GaN nanowires , 2007 .

[27]  H. Lüth,et al.  Mechanism of molecular beam epitaxy growth of GaN nanowires on Si(111) , 2007 .

[28]  K. Kishino,et al.  Structural and optical properties of GaN nanocolumns grown on (0001) sapphire substrates by rf-plasma-assisted molecular-beam epitaxy , 2007 .

[29]  B. Daudin,et al.  From nucleation to growth of catalyst-free GaN nanowires on thin AlN buffer layer , 2007 .

[30]  K. Kishino,et al.  GaN/AlGaN nanocolumn ultraviolet light-emitting diodes grown on n-(111) Si by RF-plasma-assisted molecular beam epitaxy , 2008 .

[31]  K. Bertness,et al.  Mechanism for spontaneous growth of GaN nanowires with molecular beam epitaxy , 2008 .

[32]  L. Largeau,et al.  Facet and in-plane crystallographic orientations of GaN nanowires grown on Si(111) , 2008, Nanotechnology.

[33]  C. T. Foxon,et al.  Defect reduction in GaN/(0001)sapphire films grown by molecular beam epitaxy using nanocolumn intermediate layers , 2008 .

[34]  M. Stutzmann,et al.  Nucleation and growth of GaN nanorods on Si (111) surfaces by plasma-assisted molecular beam epitaxy - The influence of Si- and Mg-doping , 2008 .

[35]  J. Ristić,et al.  On the mechanisms of spontaneous growth of III-nitride nanocolumns by plasma-assisted molecular beam epitaxy , 2008 .

[36]  H. Lüth,et al.  Interface and wetting layer effect on the catalyst-free nucleation and growth of GaN nanowires. , 2008, Small.

[37]  V. Dubrovskii,et al.  Growth kinetics and crystal structure of semiconductor nanowires , 2008 .

[38]  H. Renevier,et al.  Plasma-assisted molecular beam epitaxy growth of GaN nanowires using indium-enhanced diffusion , 2008 .

[39]  J. Neugebauer,et al.  Large anisotropic adatom kinetics on nonpolar GaN surfaces: Consequences for surface morphologies and nanowire growth , 2009 .

[40]  C. T. Foxon,et al.  A complementary geometric model for the growth of GaN nanocolumns prepared by plasma-assisted molecular beam epitaxy , 2009 .

[41]  V. Consonni,et al.  Effects of nanowire coalescence on their structural and optical properties on a local scale , 2009 .

[42]  H. Renevier,et al.  Nucleation mechanism of GaN nanowires grown on (111) Si by molecular beam epitaxy , 2009, Nanotechnology.

[43]  M. Stutzmann,et al.  Triple-twin domains in Mg doped GaN wurtzite nanowires: structural and electronic properties of this zinc-blende-like stacking , 2009, Nanotechnology.

[44]  J. Grandal,et al.  A growth diagram for plasma-assisted molecular beam epitaxy of GaN nanocolumns on Si(111) , 2009, 2401.16328.

[45]  F. Julien,et al.  Ultraviolet photodetector based on GaN/AlN quantum disks in a single nanowire. , 2010, Nano letters.

[46]  A. Trampert,et al.  In situ investigation of self-induced GaN nanowire nucleation on Si , 2010 .

[47]  E. Monroy,et al.  Identification of III–N nanowire growth kinetics via a marker technique , 2010, Nanotechnology.

[48]  S. Reitzenstein,et al.  Direct comparison of catalyst-free and catalyst-induced GaN nanowires , 2010 .

[49]  V. Consonni,et al.  Nucleation mechanisms of epitaxial GaN nanowires: Origin of their self-induced formation and initial radius , 2010 .

[50]  L. Geelhaar,et al.  Different growth rates for catalyst-induced and self-induced GaN nanowires , 2010 .

[51]  J. Eymery,et al.  Self-assembled growth of catalyst-free GaN wires by metal–organic vapour phase epitaxy , 2010, Nanotechnology.

[52]  V. Consonni,et al.  In situ analysis of strain relaxation during catalyst-free nucleation and growth of GaN nanowires , 2010, Nanotechnology.

[53]  H. Renevier,et al.  Polarity of GaN nanowires grown by plasma-assisted molecular beam epitaxy on Si(111) , 2011 .

[54]  M. Hanke,et al.  Nucleation mechanisms of self-induced GaN nanowires grown on an amorphous interlayer , 2011 .

[55]  S. Reitzenstein,et al.  Properties of GaN Nanowires Grown by Molecular Beam Epitaxy , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[56]  R. Calarco,et al.  Doping of III-Nitride Nanowires Grown by Molecular Beam Epitaxy , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[57]  S. Heun,et al.  Ultra-thin high-quality silicon nitride films on Si(111) , 2011 .

[58]  V. Bright,et al.  Effect of AlN buffer layer properties on the morphology and polarity of GaN nanowires grown by molecular beam epitaxy , 2011 .

[59]  M. Mills,et al.  Three-dimensional GaN/AlN nanowire heterostructures by separating nucleation and growth processes. , 2011, Nano letters.

[60]  V. Consonni,et al.  Physical origin of the incubation time of self-induced GaN nanowires , 2011 .

[61]  H. Renevier,et al.  Nucleation of GaN nanowires grown by plasma-assisted molecular beam epitaxy: The effect of temperature , 2011 .

[62]  L. Largeau,et al.  Morphology of self-catalyzed GaN nanowires and chronology of their formation by molecular beam epitaxy , 2011, Nanotechnology.

[63]  J. Ristić,et al.  Radiative defects in GaN nanocolumns: Correlation with growth conditions and sample morphology , 2011 .

[64]  O. Brandt,et al.  Macro- and micro-strain in GaN nanowires on Si(111) , 2011, Nanotechnology.

[65]  V. Consonni,et al.  Nucleation and coalescence effects on the density of self-induced GaN nanowires grown by molecular beam epitaxy , 2011 .

[66]  A. Davydov,et al.  GaN Nanowires Grown by Molecular Beam Epitaxy , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[67]  J. Ristić,et al.  Polarity determination by electron energy-loss spectroscopy: application to ultra-small III-nitride semiconductor nanocolumns , 2011, Nanotechnology.

[68]  V. Dubrovskii,et al.  Scaling thermodynamic model for the self-induced nucleation of GaN nanowires , 2012 .

[69]  E. Monroy,et al.  Correlation of polarity and crystal structure with optoelectronic and transport properties of GaN/AlN/GaN nanowire sensors. , 2012, Nano letters.

[70]  K. Kishino,et al.  Near-Infrared InGaN Nanocolumn Light-Emitting Diodes Operated at 1.46 µm , 2012 .

[71]  O. Brandt,et al.  Spontaneous nucleation and growth of GaN nanowires: the fundamental role of crystal polarity. , 2012, Nano letters.

[72]  U. Waghmare,et al.  Superstructure of self-aligned hexagonal GaN nanorods formed on nitrided Si(111) surface , 2012 .

[73]  M. Stutzmann,et al.  Self-assembled GaN nanowires on diamond. , 2012, Nano letters.

[74]  N. V. Sibirev,et al.  Effect of diffusion from a lateral surface on the rate of GaN nanowire growth , 2012 .

[75]  T. Gotschke,et al.  The influence of Mg doping on the nucleation of self-induced GaN nanowires , 2012 .

[76]  O. Brandt,et al.  Inhomogeneous strain in GaN nanowires determined from x-ray diffraction peak profiles , 2012 .

[77]  H. Renevier,et al.  In situ study of self-assembled GaN nanowires nucleation on Si(111) by plasma-assisted molecular beam epitaxy , 2012 .

[78]  N. Gogneau,et al.  N-Polar GaN Nanowires Seeded by Al Droplets on Si(111) , 2012 .

[79]  V. Dubrovskii,et al.  Quantitative description for the growth rate of self-induced GaN nanowires , 2012 .

[80]  A. Waag,et al.  GaN based nanorods for solid state lighting , 2012 .

[81]  M. Eickhoff,et al.  Polarity assignment in ZnTe, GaAs, ZnO, and GaN-AlN nanowires from direct dumbbell analysis. , 2012, Nano letters.

[82]  V. Dubrovskii,et al.  Scaling growth kinetics of self-induced GaN nanowires , 2012 .

[83]  V. Dubrovskii,et al.  Modeling GaN nanowire growth on silicon , 2013 .

[84]  S. Kret,et al.  Influence of substrate nitridation temperature on epitaxial alignment of GaN nanowires to Si(111) substrate , 2013, Nanotechnology.

[85]  Kevin A. Grossklaus,et al.  Misorientation defects in coalesced self-catalyzed GaN nanowires , 2013 .

[86]  K. Sabelfeld,et al.  Self-regulated radius of spontaneously formed GaN nanowires in molecular beam epitaxy. , 2013, Nano letters.