An Efficient Parallel-in-Time Method for Optimization with Parabolic PDEs
暂无分享,去创建一个
[1] Sebastian Götschel,et al. Parallel-in-Time for Parabolic Optimal Control Problems Using PFASST , 2017 .
[2] Michael L. Minion,et al. Efficient Implementation of a Multi-Level Parallel in Time Algorithm , 2014 .
[3] C. M. Reeves,et al. Function minimization by conjugate gradients , 1964, Comput. J..
[4] E. Hairer,et al. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .
[5] Boris Polyak. The conjugate gradient method in extremal problems , 1969 .
[6] Michael Minion,et al. Parallel-In-Time Magnus Integrators , 2019, SIAM J. Sci. Comput..
[7] Jacob B. Schroder,et al. A non-intrusive parallel-in-time adjoint solver with the XBraid library , 2017, Comput. Vis. Sci..
[8] Rolf Krause,et al. Inexact spectral deferred corrections , 2016 .
[9] Lars Ruthotto,et al. Layer-Parallel Training of Deep Residual Neural Networks , 2018, SIAM J. Math. Data Sci..
[10] Stefan Ulbrich,et al. Optimization with PDE Constraints , 2008, Mathematical modelling.
[11] Ya-Xiang Yuan,et al. A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property , 1999, SIAM J. Optim..
[12] Stefan Ulbrich,et al. Preconditioners Based on “Parareal” Time-Domain Decomposition for Time-Dependent PDE-Constrained Optimization , 2015 .
[13] Martin Weiser,et al. Faster SDC convergence on non-equidistant grids by DIRK sweeps , 2015 .
[14] Eldad Haber,et al. Stable architectures for deep neural networks , 2017, ArXiv.
[15] E. Zeidler. Nonlinear functional analysis and its applications , 1988 .
[16] M. Heinkenschloss,et al. A Parallel-inTime Gradient-Type Method for Discrete Time Optimal Control Problems ∗ , 2016 .
[17] Peter Deuflhard,et al. Newton Methods for Nonlinear Problems , 2004 .
[18] E. Polak,et al. Note sur la convergence de méthodes de directions conjuguées , 1969 .
[19] Michael L. Minion,et al. TOWARD AN EFFICIENT PARALLEL IN TIME METHOD FOR PARTIAL DIFFERENTIAL EQUATIONS , 2012 .
[20] P. Deuflhard. Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms , 2011 .
[21] Martin Stoll,et al. Domain decomposition in time for PDE-constrained optimization , 2015, Comput. Phys. Commun..
[22] M. Minion. Semi-implicit spectral deferred correction methods for ordinary differential equations , 2003 .
[23] Michael L. Minion,et al. A HYBRID PARAREAL SPECTRAL DEFERRED CORRECTIONS METHOD , 2010 .
[24] A. Bourlioux,et al. High-order multi-implicit spectral deferred correction methods for problems of reactive flow , 2003 .
[25] Martin J. Gander,et al. Schwarz Methods for the Time-Parallel Solution of Parabolic Control Problems , 2016 .
[26] Matthias Heinkenschloss,et al. A time-domain decomposition iterative method for the solution of distributed linear quadratic optimal control problems , 2005 .
[27] M. Carpenter,et al. Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .
[28] Sebastian Götschel,et al. Lossy compression for PDE-constrained optimization: adaptive error control , 2015, Comput. Optim. Appl..
[29] Rolf Krause,et al. A multi-level spectral deferred correction method , 2013, BIT Numerical Mathematics.
[30] Eldad Haber,et al. Deep Neural Networks Motivated by Partial Differential Equations , 2018, Journal of Mathematical Imaging and Vision.
[31] Jacob B. Schroder,et al. A non-intrusive parallel-in-time approach for simultaneous optimization with unsteady PDEs , 2018, Optim. Methods Softw..
[32] L. Greengard,et al. Spectral Deferred Correction Methods for Ordinary Differential Equations , 2000 .
[33] Martin J. Gander,et al. 50 Years of Time Parallel Time Integration , 2015 .
[34] Liang Zhong,et al. Efficient estimation of personalized biventricular mechanical function employing gradient‐based optimization , 2018, International journal for numerical methods in biomedical engineering.
[35] Christian E. Schaerer,et al. Analysis of Block Parareal Preconditioners for Parabolic Optimal Control Problems , 2010, SIAM J. Sci. Comput..
[36] Martin J. Gander,et al. PARAEXP: A Parallel Integrator for Linear Initial-Value Problems , 2013, SIAM J. Sci. Comput..
[37] Matthias Bolten,et al. A multigrid perspective on the parallel full approximation scheme in space and time , 2016, Numer. Linear Algebra Appl..
[38] Stefan Ulbrich,et al. OPTPDE: A Collection of Problems in PDE-Constrained Optimization , 2014 .
[39] Fredi Tröltzsch,et al. On the optimal control of the Schlögl-model , 2013, Comput. Optim. Appl..
[40] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[41] Sebastian Götschel,et al. Quantitative Defect Reconstruction in Active Thermography for Fiber-Reinforced Composites , 2016 .
[42] S. Güttel,et al. A rational deferred correction approach to PDE-constrained optimization , 2016 .