Wavelength Division Multiplexing in Long-Haul Transmission Systems

The Erbium-Doped Tiber Amplifier (EDFA) has had a profound impact on the design, operation and performance of transoceanic cable transmission, and is central to the expected proliferation of cable systems. Laboratory experiments have demonstrated 100 Gb/s over transoceanic distances using Wavelength Division Multiplexing (WDM) techniques. These large transmission capacity experiments have resulted from an increased understanding of the effects that can limit performance of WDM systems. Important strides have been made in areas of dispersion management, gain equalization, and modulation formats which have made possible the demonstration of large data transmission capacity. This paper reviews experimental techniques developed to improve the performance of long-haul WDM transmission systems based on the Non-Return-to-Zero (NRZ) format, and other non-soliton methods.

[1]  N. S. Bergano,et al.  100 Gb/s Error Free Transmission over 9100 km using Twenty 5 Gb/s WDM Channels , 1996 .

[2]  Justin Boyd Judkins,et al.  Temperature-insensitive long-period fiber gratings , 1996 .

[3]  Tingye Li,et al.  The impact of optical amplifiers on long-distance lightwave telecommunications , 1993, Proc. IEEE.

[4]  J. L. Pamart,et al.  Forward error correction in a 5 Gbit/s 6400 km EDFA based system , 1994 .

[5]  M.G. Taylor Observation of new polarization dependence effect in long haul optically amplified system , 1993, IEEE Photonics Technology Letters.

[6]  E. Lichtman Limitations imposed by polarization-dependent gain and loss on all-optical ultralong communication systems , 1995 .

[7]  N. S. Bergano,et al.  Margin measurements in optical amplifier system , 1993, IEEE Photonics Technology Letters.

[8]  S. Yamamoto,et al.  BER performance improvement by forward error correcting code in 5 Gbit/s 9000 km EDFA transmission system , 1994 .

[9]  D. Lewis,et al.  Polarisation dependent gain in erbium doped fibre amplifiers , 1994 .

[10]  N. S. Bergano,et al.  Circulating loop transmission experiments for the study of long-haul transmission systems using erbium-doped fiber amplifiers , 1995 .

[11]  A.R. Chraplyvy,et al.  Transmission of eight 20-Gb/s channels over 232 km of conventional single-mode fiber , 1995, IEEE Photonics Technology Letters.

[12]  N. S. Bergano,et al.  Bit-synchronous polarisation and phase modulation scheme for improving the performance of optical amplifier transmission systems , 1996 .

[13]  P. R. Trischitta,et al.  The TAT-12/13 Cable Network , 1996 .

[14]  N. S. Bergano,et al.  Polarization scrambling improves SNR performance in a chain of EDFAs , 1994 .

[15]  N. Edagawa,et al.  Observation of BER degradation due to fading in long-distance optical amplifier system , 1993 .

[16]  M. G. Taylor,et al.  Improvement in performance of long haul EDFA link using high frequency polarisation modulation , 1994 .

[17]  M. G. Taylor Observation of new polarisation dependence effect in long haul optically amplified system , 1993 .

[18]  R. Azzam,et al.  Polarized light in optics and spectroscopy , 1990 .

[19]  F. Forghieri,et al.  One Terabit/s Transmission Experiment , 1996 .

[20]  Alan H. Gnauck Recent progress in high-capacity long-haul WDM systems , 1996, Optical Fiber Communications, OFC..

[21]  John E. Sipe,et al.  Long-period fiber gratings as band-rejection filters , 1995 .

[22]  A. Monaco,et al.  Detection of a new submicroscopic Norrie disease deletion interval with a novel DNA probe isolated by differential Alu PCR fingerprint cloning. , 1993, Cytogenetics and cell genetics.

[23]  N. S. Bergano,et al.  Bit-synchronous polarization and phase modulation improves the performance of optical amplifier transmission systems , 1996, Optical Fiber Communications, OFC..

[24]  John Lehrer Zyskind,et al.  40 Gb/s WDM Transmission of Eight 5 Gb/s Data Channels Over Transoceanic Distances using the Conventional NRZ Modulation Format , 1995 .

[25]  S. Yamamoto,et al.  5 Gbit/s optical transmission terminal equipment using forward error correcting code and optical amplifier , 1994 .

[26]  O. Audouin,et al.  Penalties in long-haul optical amplifier systems due to polarization dependent loss and gain , 1994, IEEE Photonics Technology Letters.

[27]  C. R. Giles,et al.  Transient gain and cross talk in erbium-doped fiber amplifiers. , 1989, Optics letters.

[28]  C. R. Giles,et al.  Propagation of signal and noise in concatenated erbium-doped fiber optical amplifiers , 1991 .

[29]  D. Gray,et al.  Electrooptic polarization scramblers for optically amplified long-haul transmission systems , 1994, IEEE Photonics Technology Letters.

[30]  Govind P. Agrawal,et al.  Group-velocity dispersion , 2019, Nonlinear Fiber Optics.

[31]  Y. Fukada,et al.  BER fluctuation suppression in optical in-line amplifier systems using polarisation scrambling technique , 1994 .

[32]  P. Kaiser,et al.  Status and future trends in terrestrial optical fiber systems in North America, Europe, and Japan , 1987, IEEE Communications Magazine.

[33]  R. M. Derosier,et al.  8*10 Gb/s transmission through 280 km of dispersion-managed fiber , 1993, IEEE Photonics Technology Letters.

[34]  E. Lichtmann,et al.  Performance degradation due to polarisation dependent gain and loss in lightwave systems with optical amplifiers , 1993 .

[35]  V. J. Mazurczyk Polarization Hole Burning in Erbium Doped Fiber Amplifiers. , 1993 .