Evaluation of algorithms for Multi-Modality Whole Heart Segmentation: An open-access grand challenge

Highlights • This work presents the methodologies and evaluation results for the WHS algorithms selected from the submissions to the Multi-Modality Whole Heart Segmentation (MM-WHS) challenge, in conjunction with MICCAI 2017.• This work introduces the related information to the challenge, discusses the results from the conventional methods and deep learning-based algorithms, and provides insights to the future research.• The challenge provides a fair and intuitive comparison framework for methods developed and being developed for WHS.• The challenge provides the training datasets with manually delineated ground truths and evaluation for an ongoing development of MM-WHS algorithms.

[1]  Michael Brady,et al.  MRF-Based Deformable Registration and Ventilation Estimation of Lung CT , 2013, IEEE Transactions on Medical Imaging.

[2]  Mattias P. Heinrich,et al.  MRI Whole Heart Segmentation Using Discrete Nonlinear Registration and Fast Non-local Fusion , 2017, STACOM@MICCAI.

[3]  Xiahai Zhuang,et al.  Challenges and methodologies of fully automatic whole heart segmentation: a review. , 2013, Journal of healthcare engineering.

[4]  Örjan Smedby,et al.  Automatic Whole Heart Segmentation Using Deep Learning and Shape Context , 2017, STACOM@MICCAI.

[5]  Sébastien Ourselin,et al.  Multi-atlas Propagation Whole Heart Segmentation from MRI and CTA Using a Local Normalised Correlation Coefficient Criterion , 2013, FIMH.

[6]  Kyoung Mu Lee,et al.  Deeply-Recursive Convolutional Network for Image Super-Resolution , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[8]  Kawal S. Rhode,et al.  CardiacNET: Segmentation of Left Atrium and Proximal Pulmonary Veins from MRI Using Multi-view CNN , 2017, MICCAI.

[9]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Xin Yang,et al.  Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? , 2018, IEEE Transactions on Medical Imaging.

[11]  Lorenzo Torresani,et al.  Learning Spatiotemporal Features with 3D Convolutional Networks , 2014, 2015 IEEE International Conference on Computer Vision (ICCV).

[12]  Ronald M. Summers,et al.  A New 2.5D Representation for Lymph Node Detection Using Random Sets of Deep Convolutional Neural Network Observations , 2014, MICCAI.

[13]  Syed Muhammad Anwar,et al.  Deep Learning in Medical Image Analysis , 2017 .

[14]  Tinsu Pan,et al.  Cardiac atlas development and validation for automatic segmentation of cardiac substructures. , 2017, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[15]  Yoshua Bengio,et al.  Generative Adversarial Networks , 2014, ArXiv.

[16]  Thomas A. Funkhouser,et al.  Dilated Residual Networks , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Seyed-Ahmad Ahmadi,et al.  V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation , 2016, 2016 Fourth International Conference on 3D Vision (3DV).

[18]  Guang Yang,et al.  The Deep Poincaré Map: A Novel Approach for Left Ventricle Segmentation , 2017, MICCAI.

[19]  Örjan Smedby,et al.  Automatic brain segmentation using artificial neural networks with shape context , 2018, Pattern Recognit. Lett..

[20]  Xiahai Zhuang,et al.  Multi-scale patch and multi-modality atlases for whole heart segmentation of MRI , 2016, Medical Image Anal..

[21]  Daniel Rueckert,et al.  Multiatlas whole heart segmentation of CT data using conditional entropy for atlas ranking and selection. , 2015, Medical physics.

[22]  Sébastien Ourselin,et al.  Evaluation of Six Registration Methods for the Human Abdomen on Clinically Acquired CT , 2016, IEEE Transactions on Biomedical Engineering.

[23]  Jing Qin,et al.  3D Deeply-Supervised U-Net Based Whole Heart Segmentation , 2017, STACOM@MICCAI.

[24]  Jichao Zhao,et al.  Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges , 2018, Lecture Notes in Computer Science.

[25]  King-Sun Fu,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence Publication Information , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Xin Yang,et al.  3D Convolutional Networks for Fully Automatic Fine-Grained Whole Heart Partition , 2017, STACOM@MICCAI.

[27]  Gustavo Carneiro,et al.  Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance , 2017, Medical Image Anal..

[28]  Ulas Bagci,et al.  Multi-Planar Deep Segmentation Networks for Cardiac Substructures from MRI and CT , 2017, STACOM@MICCAI.

[29]  Y. Benjamini,et al.  THE CONTROL OF THE FALSE DISCOVERY RATE IN MULTIPLE TESTING UNDER DEPENDENCY , 2001 .

[30]  Guang Yang,et al.  Bayesian VoxDRN: A Probabilistic Deep Voxelwise Dilated Residual Network for Whole Heart Segmentation from 3D MR Images , 2018, MICCAI.

[31]  Örjan Smedby,et al.  Automatic Multi-organ Segmentation in Non-enhanced CT Datasets Using Hierarchical Shape Priors , 2014, 2014 22nd International Conference on Pattern Recognition.

[32]  P. Jaccard,et al.  Etude comparative de la distribution florale dans une portion des Alpes et des Jura , 1901 .

[33]  Horst Bischof,et al.  Multi-label Whole Heart Segmentation Using CNNs and Anatomical Label Configurations , 2017, STACOM@MICCAI.

[34]  H. Alkadhi,et al.  MRI and CT in the diagnosis of coronary artery disease: indications and applications , 2010, Insights into imaging.

[35]  Piotr J. Slomka,et al.  Heart chambers and whole heart segmentation techniques: review , 2012, J. Electronic Imaging.

[36]  Huazhong Shu,et al.  Automatic Whole Heart Segmentation in CT Images Based on Multi-atlas Image Registration , 2017, STACOM@MICCAI.

[37]  Daniel Rueckert,et al.  Right ventricle segmentation from cardiac MRI: A collation study , 2015, Medical Image Anal..

[38]  Jeroen J. Bax,et al.  Cardiac CT and CT coronary angiography: technology and application , 2008, Heart.

[39]  Michael Brady,et al.  Towards Realtime Multimodal Fusion for Image-Guided Interventions Using Self-similarities , 2013, MICCAI.

[40]  Daniel Rueckert,et al.  Cardiac Segmentation on Late Gadolinium Enhancement MRI: A Benchmark Study from Multi-Sequence Cardiac MR Segmentation Challenge , 2020, ArXiv.

[41]  Jürgen Weese,et al.  Benchmark for Algorithms Segmenting the Left Atrium From 3D CT and MRI Datasets , 2015, IEEE Transactions on Medical Imaging.

[42]  Richard James Housden,et al.  Algorithms for left atrial wall segmentation and thickness – Evaluation on an open-source CT and MRI image database , 2018, Medical Image Anal..

[43]  Horst Bischof,et al.  Regressing Heatmaps for Multiple Landmark Localization Using CNNs , 2016, MICCAI.

[44]  Oscar Camara,et al.  Generalized Overlap Measures for Evaluation and Validation in Medical Image Analysis , 2006, IEEE Transactions on Medical Imaging.

[45]  Polina Golland,et al.  Interactive Whole-Heart Segmentation in Congenital Heart Disease , 2015, MICCAI.

[46]  Hamid Jafarkhani,et al.  A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI , 2015, Medical Image Anal..

[47]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[48]  Jean-Yves Ramel,et al.  Local Probabilistic Atlases and a Posteriori Correction for the Segmentation of Heart Images , 2017, STACOM@MICCAI.

[49]  Simon K. Warfield,et al.  Left Ventricular Segmentation Challenge from Cardiac MRI: A Collation Study , 2011, STACOM.

[50]  Daniel J. Perry,et al.  Evaluation of current algorithms for segmentation of scar tissue from late Gadolinium enhancement cardiovascular magnetic resonance of the left atrium: an open-access grand challenge , 2013, Journal of Cardiovascular Magnetic Resonance.

[51]  Xin Yang,et al.  Hybrid Loss Guided Convolutional Networks for Whole Heart Parsing , 2017, STACOM@MICCAI.

[52]  B. Norrving,et al.  Global atlas on cardiovascular disease prevention and control. , 2011 .

[53]  Guido Gerig,et al.  User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability , 2006, NeuroImage.

[54]  Xiaoou Tang,et al.  Image Super-Resolution Using Deep Convolutional Networks , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[55]  Einly Lim,et al.  Fully automated segmentation of the left ventricle in cine cardiac MRI using neural network regression , 2018, Journal of magnetic resonance imaging : JMRI.

[56]  Ling Shao,et al.  A review of heart chamber segmentation for structural and functional analysis using cardiac magnetic resonance imaging , 2016, Magnetic Resonance Materials in Physics, Biology and Medicine.

[57]  V. Davutoglu,et al.  Where is the right ventricle? , 2014, BMJ Case Reports.

[58]  Mattias P. Heinrich,et al.  Multi-organ Segmentation Using Vantage Point Forests and Binary Context Features , 2016, MICCAI.

[59]  Feng Liu,et al.  A framework combining window width-level adjustment and Gaussian filter-based multi-resolution for automatic whole heart segmentation , 2017, Neurocomputing.