The Range of a Random Walk on a Comb

The graph obtained from the integer grid $\mathbb{Z}\times\mathbb{Z}$ by the removal of all horizontal edges that do not belong to the $x$-axis is called a comb . In a random walk on a graph, whenever a walker is at a vertex $v$, in the next step it will visit one of the neighbors of $v$, each with probability $1/d(v)$, where $d(v)$ denotes the degree of $v$. We answer a question of Cs a ki, Cs o rg ő , F o ldes, R e v e sz, and Tusn a dy by showing that the expected number of vertices visited by a random walk on the comb after $n$ steps is $(\frac1{2\sqrt{2\pi}}+o(1))\sqrt{n}\log n.$ This contradicts a claim of Weiss and Havlin.

[1]  Daniela Bertacchi,et al.  Uniform asymptotic estimates of transition probabilities on combs , 2003, Journal of the Australian Mathematical Society.

[2]  W. Woess Random walks on infinite graphs and groups, by Wolfgang Woess, Cambridge Tracts , 2001 .

[3]  Yuval Peres,et al.  Recurrent Graphs where Two Independent Random Walks Collide Finitely Often , 2004 .

[4]  Peter Gerl Natural spanning trees of Zd are recurrent , 1986, Discret. Math..

[5]  Shlomo Havlin,et al.  Some properties of a random walk on a comb structure , 1986 .

[6]  G. Pólya Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz , 1921 .

[7]  Alfréd Rényi,et al.  Probability Theory , 1970 .

[8]  L. Asz Random Walks on Graphs: a Survey , 2022 .

[9]  Daniela Bertacchi,et al.  Asymptotic behaviour of the simple random walk on the 2-dimensional comb , 2006 .

[10]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[11]  Nserc Canada,et al.  Strong limit theorems for a simple random walk on the 2-dimensional comb , 2009 .

[12]  Endre Csáki,et al.  On the local time of random walk on the 2-dimensional comb , 2011 .

[13]  László Lovász,et al.  Random Walks on Graphs: A Survey , 1993 .

[14]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[15]  L. Saloff‐Coste RANDOM WALKS ON INFINITE GRAPHS AND GROUPS (Cambridge Tracts in Mathematics 138) , 2001 .

[16]  Davide Cassi,et al.  RANDOM WALKS ON d-DIMENSIONAL COMB LATTICES , 1992 .