Review: A 4-node quasi-conforming Reissner-Mindlin shell element by using Timoshenko's beam function

In the paper, we propose a new 4-node quadrilateral shell element with six degrees of freedom per node within the framework of assumed displacement quasi-conforming method. In order to improve membrane behavior, the drilling degrees of freedom are added. The exact displacement function of Timoshenko's beam, from which the interpolated inner-field function is derived, is used as the string net function on the element boundary in the bending part. The re-constitution technique for the shear strain terms is adopted. The proposed element preserves all the advantages of the quasi-conforming method: explicit stiffness matrix, convenient post processing and free from membrane locking and shear locking, which can be used for the analysis of both moderately thick and thin plates/shells, and the convergence for the very thin case can be ensured theoretically. The numerical tests and comparisons with other existing solutions in the literatures suggest that the present element is efficient and accurate.

[1]  R. L. Harder,et al.  A proposed standard set of problems to test finite element accuracy , 1985 .

[2]  Eduardo N. Dvorkin,et al.  A formulation of general shell elements—the use of mixed interpolation of tensorial components† , 1986 .

[3]  George Z. Voyiadjis,et al.  A 4‐node assumed strain quasi‐conforming shell element with 6 degrees of freedom , 2003 .

[4]  Chen Wanji,et al.  Refined discrete quadrilateral degenerated shell element by using Timoshenko's beam function , 2005 .

[5]  L. Tang,et al.  Quasi-conforming element techniques for penalty finite element methods , 1985 .

[6]  T. Hughes,et al.  Finite Elements Based Upon Mindlin Plate Theory With Particular Reference to the Four-Node Bilinear Isoparametric Element , 1981 .

[7]  Richard H. Macneal,et al.  A simple quadrilateral shell element , 1978 .

[8]  George Z. Voyiadjis,et al.  Simple and efficient shear flexible two-node arch/beam and four-node cylindrical shell/plate finite elements , 1991 .

[9]  George Z. Voyiadjis,et al.  Geometrically nonlinear analysis of plates by assumed strain element with explicit tangent stiffness matrix , 1991 .

[10]  George Z. Voyiadjis,et al.  EFFICIENT AND ACCURATE FOUR-NODE QUADRILATERAL Co PLATE BENDING ELEMENT BASED ON ASSUMED STRAIN FIELDS , 1991 .

[11]  Yupu Guan,et al.  A geometrically non-linear quasi-conforming nine-node quadrilateral degenerated solid shell element , 1995 .

[12]  Robert D. Cook,et al.  Four-node ‘flat’ shell element: Drilling degrees of freedom, membrane-bending coupling, warped geometry, and behavior , 1994 .

[13]  K. Bathe,et al.  A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .

[14]  Worsak Kanok-Nukulchai,et al.  A simple and efficient finite element for general shell analysis , 1979 .

[15]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory , 1990 .

[16]  Ki-Du Kim,et al.  Nonlinear Formulations of a Four-Node Quasi-Conforming Shell Element , 2009 .

[17]  Ki-Du Kim,et al.  A co-rotational quasi-conforming 4-node resultant shell element for large deformation elasto-plastic analysis , 2006 .

[18]  K. Bathe,et al.  A four‐node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation , 1985 .

[19]  Theodore H. H. Pian,et al.  Improvement of Plate and Shell Finite Elements by Mixed Formulations , 1977 .

[20]  O. C. Zienkiewicz,et al.  Reduced integration technique in general analysis of plates and shells , 1971 .

[21]  Richard H. Macneal,et al.  Derivation of element stiffness matrices by assumed strain distributions , 1982 .

[22]  George Z. Voyiadjis,et al.  General non-linear finite element analysis of thick plates and shells , 2006 .

[23]  C. Wang Timoshenko Beam-Bending Solutions in Terms of Euler-Bernoulli Solutions , 1995 .

[24]  J. C. Simo,et al.  A CLASS OF MIXED ASSUMED STRAIN METHODS AND THE METHOD OF INCOMPATIBLE MODES , 1990 .

[25]  He Dong-sheng,et al.  The displacement function of quasi-conforming element and its node error , 2002 .

[26]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part II: the linear theory; computational aspects , 1989 .

[28]  Chen Wanji,et al.  Refined quadrilateral element based on Mindlin/Reissner plate theory , 2000 .

[29]  Jean-Louis Batoz,et al.  Evaluation of a new quadrilateral thin plate bending element , 1982 .

[30]  Ahmed K. Noor,et al.  Mixed models and reduced/selective integration displacement models for nonlinear shell analysis , 1982 .

[31]  George Z. Voyiadjis,et al.  A Simple C0 quadrilateral thick/thin shell element based on the refined shell theory and the assumed strain fields , 1991 .

[32]  Medhat A. Haroun,et al.  Reduced and selective integration techniques in the finite element analysis of plates , 1978 .

[33]  D. Malkus,et al.  Mixed finite element methods—reduced and selective integration techniques: a unification of concepts , 1990 .

[34]  Yupu Guan,et al.  A quasi-conforming nine-node degenerated shell finite element , 1992 .

[35]  E. Hinton,et al.  A study of quadrilateral plate bending elements with ‘reduced’ integration , 1978 .

[36]  G. Voyiadjis,et al.  A simple non‐layered finite element for the elasto‐plastic analysis of shear flexible plates , 1992 .

[37]  T. Belytschko,et al.  Physical stabilization of the 4-node shell element with one point quadrature , 1994 .

[38]  P. Hu,et al.  A Four-Node Reissner-Mindlin Shell with Assumed Displacement Quasi-Conforming Method , 2011 .

[39]  Abdur Razzaque,et al.  Program for triangular bending elements with derivative smoothing , 1973 .

[40]  Rakesh K. Kapania,et al.  A survey of recent shell finite elements , 2000 .