An Image Algebra

This chapter describes an image algebra, which is based on symbolic projection, including a limited extension of the original set of relational operators. In the algebra a generalized empty space object is also introduced, which supports general descriptions and manipulations of images. The concept of “empty space” is used not only to describe the complete image but also to make it possible to describe space outside the objects of interest. The term “empty space” was first used in this sense by Lozano–Perez partly, to build up a structure that can be used to describe the space of an image. Among the alternative approaches to pictorial data structures, hierarchical structures of various kinds such as the quad-tree have been subject to particular interest.

[1]  Joseph N. Wilson Introduction to Image Algebra Ada , 1991, Optics & Photonics.

[2]  Robert M. Lougheed A High Speed Recirculating Neighborhood Processing Architecture , 1985, Photonics West - Lasers and Applications in Science and Engineering.

[3]  Joseph N. Wilson Supporting image algebra in the C++ language , 1993, Optics & Photonics.

[4]  T. Crimmins,et al.  Image Algebra and Automatic Shape Recognition , 1985, IEEE Transactions on Aerospace and Electronic Systems.

[5]  T. J. Fountain,et al.  The CLIP7A Image Processor , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[7]  H. Minkowski Volumen und Oberfläche , 1903 .

[8]  Michael J. B. Duff,et al.  Review of the CLIP image processing system , 1899, AFIPS National Computer Conference.

[9]  S. H. Unger,et al.  A Computer Oriented toward Spatial Problems , 1899, Proceedings of the IRE.

[10]  Jennifer L. Davidson,et al.  Morphology neural networks: An introduction with applications , 1993 .

[11]  W. Daniel Hillis,et al.  The connection machine , 1985 .

[12]  Petros Maragos,et al.  Morphological filters-Part II: Their relations to median, order-statistic, and stack filters , 1987, IEEE Trans. Acoust. Speech Signal Process..

[13]  Sukhamay Kundu The equivalence of the subregion representation and the wall representation for a certain class of rectangular dissections , 1988, CACM.

[14]  R. Ho Algebraic Topology , 2022 .

[15]  Petros Maragos,et al.  Morphological skeleton representation and coding of binary images , 1984, IEEE Trans. Acoust. Speech Signal Process..

[16]  G. Matheron Random Sets and Integral Geometry , 1976 .

[17]  T. J. Fountain,et al.  A cellular logic array for image processing , 1973, Pattern Recognit..

[18]  Petros Maragos,et al.  Morphological filters-Part I: Their set-theoretic analysis and relations to linear shift-invariant filters , 1987, IEEE Trans. Acoust. Speech Signal Process..

[19]  Stanley R. Sternberg,et al.  Biomedical Image Processing , 1983, Computer.

[20]  E. L. Cloud,et al.  The geometric arithmetic parallel processor , 1988, Proceedings., 2nd Symposium on the Frontiers of Massively Parallel Computation.

[21]  Jean-Marc Chassery,et al.  Connectivity and consecutivity in digital pictures , 1979 .

[22]  Esther R. Phillips,et al.  An Introduction to Analysis and Integration Theory , 1985 .

[23]  Azriel Rosenfeld,et al.  Digital topology: Introduction and survey , 1989, Comput. Vis. Graph. Image Process..

[24]  King-Sun Fu,et al.  Special Computer Architectures for Pattern Processing , 1982 .

[25]  H. Piaggio Mathematical Analysis , 1955, Nature.

[26]  Danny Crookes,et al.  An algebra-based language for image processing on transputers , 1989 .

[27]  G. M. Hunter,et al.  Linear transformation of pictures represented by quad trees , 1979 .

[28]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[29]  Shi-Kuo Chang,et al.  An image algebra for pictorial data manipulation , 1993 .

[30]  Leonard M. Uhr Algorithm-structured computer arrays and networks , 1984 .

[31]  Longin Jan Latecki,et al.  Digital Topology , 1994 .

[32]  Fred B. Schneider,et al.  A Theory of Sets , 1993 .

[33]  Joseph N. Wilson,et al.  Handbook of computer vision algorithms in image algebra , 1996 .

[34]  Erland Jungert,et al.  An Algebra for Symbolic Image Manipulation and Transformation , 1989, Visual Database Systems.

[35]  Michael R. Rowlee,et al.  Computation of disparity in stereo images on the connection machine , 1990, Optics & Photonics.

[36]  Erland Jungert,et al.  Symbolic expressions within a spatial algebra: unification and impact upon spatial reasoning , 1989, [Proceedings] 1989 IEEE Workshop on Visual Languages.

[37]  Petros A. Maragos,et al.  A unified theory of translation-invariant systems with applications to morphological analysis and coding of images , 1985 .

[38]  Tomás Lozano-Pérez,et al.  Automatic Planning of Manipulator Transfer Movements , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[39]  Chris L. Jackins,et al.  Oct-trees and their use in representing three-dimensional objects , 1980 .

[40]  Azriel Rosenfeld,et al.  Arcs and Curves in Digital Pictures , 1973, JACM.

[41]  W. Rudin Principles of mathematical analysis , 1964 .

[42]  Kenneth E. Batcher,et al.  Design of a Massively Parallel Processor , 1980, IEEE Transactions on Computers.

[43]  Robert M. Lougheed,et al.  The cytocomputer: A practical pipelined image processor , 1980, ISCA '80.

[44]  A. W. M. van den Enden,et al.  Discrete Time Signal Processing , 1989 .

[45]  Gerhard X. Ritter,et al.  TOPOLOGY OF COMPUTER VISION , 1987 .

[46]  J. Goutsias,et al.  Optimal Morphological Pattern Restoration from Noisy Binary Images , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[47]  Jennifer L. Davidson Classification of lattice transformations in image processing , 1993 .