A Semiparametric Approach to Dimension Reduction

We provide a novel and completely different approach to dimension-reduction problems from the existing literature. We cast the dimension-reduction problem in a semiparametric estimation framework and derive estimating equations. Viewing this problem from the new angle allows us to derive a rich class of estimators, and obtain the classical dimension reduction techniques as special cases in this class. The semiparametric approach also reveals that in the inverse regression context while keeping the estimation structure intact, the common assumption of linearity and/or constant variance on the covariates can be removed at the cost of performing additional nonparametric regression. The semiparametric estimators without these common assumptions are illustrated through simulation studies and a real data example. This article has online supplementary material.

[1]  Ker-Chau Li,et al.  Sliced Inverse Regression for Dimension Reduction , 1991 .

[2]  Ker-Chau Li,et al.  Regression Analysis Under Link Violation , 1989 .

[3]  A. Tsiatis Semiparametric Theory and Missing Data , 2006 .

[4]  R. H. Moore,et al.  Regression Graphics: Ideas for Studying Regressions Through Graphics , 1998, Technometrics.

[5]  Runze Li,et al.  Variable Selection in Measurement Error Models. , 2010, Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability.

[6]  H. Tong,et al.  Article: 2 , 2002, European Financial Services Law.

[7]  Bing Li,et al.  Successive direction extraction for estimating the central subspace in a multiple-index regression , 2008 .

[8]  R. Cook,et al.  Reweighting to Achieve Elliptically Contoured Covariates in Regression , 1994 .

[9]  Shuangge Ma Book review: Tsiatis, A.A. 2006: Semiparametric Theory and Missing Data. Springer , 2008 .

[10]  Y. Xia A constructive approach to the estimation of dimension reduction directions , 2007, math/0701761.

[11]  W. Fung,et al.  DIMENSION REDUCTION BASED ON CANONICAL CORRELATION , 2002 .

[12]  Yingcun Xia,et al.  Sliced Regression for Dimension Reduction , 2008 .

[13]  P. Bickel Efficient and Adaptive Estimation for Semiparametric Models , 1993 .

[14]  W. Newey,et al.  Semiparametric Efficiency Bounds , 1990 .

[15]  G. Box An analysis of transformations (with discussion) , 1964 .

[16]  Sliced Inverse Regression , 2012 .

[17]  Santiago Velilla,et al.  Dimension Reduction in Nonparametric , 2001 .

[18]  Xiangrong Yin,et al.  Direction estimation in single-index models via distance covariance , 2013, J. Multivar. Anal..

[19]  D. Cox,et al.  An Analysis of Transformations , 1964 .

[20]  W. Härdle,et al.  Optimal Smoothing in Single-index Models , 1993 .

[21]  Yu Zhu,et al.  Fourier Methods for Estimating the Central Subspace and the Central Mean Subspace in Regression , 2006 .

[22]  R. Cook,et al.  Likelihood-Based Sufficient Dimension Reduction , 2009 .

[23]  H. Ichimura,et al.  SEMIPARAMETRIC LEAST SQUARES (SLS) AND WEIGHTED SLS ESTIMATION OF SINGLE-INDEX MODELS , 1993 .

[24]  K. Do,et al.  Efficient and Adaptive Estimation for Semiparametric Models. , 1994 .

[25]  S. Christian Albright,et al.  Data Analysis and Decision Making with Microsoft Excel , 1999 .

[26]  R. Dennis Cook,et al.  Direction estimation in single-index regressions , 2005 .

[27]  B. Li,et al.  Dimension reduction for nonelliptically distributed predictors , 2009, 0904.3842.

[28]  H. Tong,et al.  An adaptive estimation of dimension reduction space, with discussion , 2002 .

[29]  Jin-Hong Park,et al.  Dimension reduction in time series , 2007 .

[30]  Ker-Chau Li Sliced inverse regression for dimension reduction (with discussion) , 1991 .

[31]  R. Dennis Cook,et al.  Dimension Reduction in Regressions With Exponential Family Predictors , 2009 .

[32]  R. Weiss,et al.  Using the Bootstrap to Select One of a New Class of Dimension Reduction Methods , 2003 .

[33]  S. Weisberg,et al.  Comments on "Sliced inverse regression for dimension reduction" by K. C. Li , 1991 .

[34]  Ker-Chau Li,et al.  On Principal Hessian Directions for Data Visualization and Dimension Reduction: Another Application of Stein's Lemma , 1992 .

[35]  R. Cook,et al.  Dimension reduction for conditional mean in regression , 2002 .

[36]  Sylvain Girard Sliced Inverse Regression , 2014 .

[37]  Yuexiao Dong Dimension reduction for non-elliptically distributed predictors , 2009 .

[38]  S. Eguchi,et al.  A paradox concerning nuisance parameters and projected estimating functions , 2004 .

[39]  Lexin Li,et al.  Sparse sufficient dimension reduction , 2007 .

[40]  Ker-Chau Li,et al.  On almost Linearity of Low Dimensional Projections from High Dimensional Data , 1993 .

[41]  W. Härdle,et al.  Direct Semiparametric Estimation of Single-Index Models with Discrete Covariates dpsfb950075.ps.tar = Enno MAMMEN J.S. MARRON: Mass Recentered Kernel Smoothers , 1996 .

[42]  K. Fang,et al.  Asymptotics for kernel estimate of sliced inverse regression , 1996 .

[43]  Junhui Wang,et al.  Sparse supervised dimension reduction in high dimensional classification , 2010 .

[44]  Thomas M. Stoker,et al.  Semiparametric Estimation of Index Coefficients , 1989 .

[45]  Adolfo Hernández,et al.  Dimension Reduction in Nonparametric Kernel Discriminant Analysis , 2005 .

[46]  B. Silverman,et al.  Weak and strong uniform consistency of kernel regression estimates , 1982 .

[47]  S. Weisberg Dimension Reduction Regression in R , 2002 .

[48]  Bing Li,et al.  Dimension reduction for non-elliptically distributed predictors: second-order methods , 2010 .

[49]  Shaoli Wang,et al.  On Directional Regression for Dimension Reduction , 2007 .