Distance fields on unstructured grids: Stable interpolation, assumed gradients, collision detection and gap function

Highlights • Presents asynchronous variational integrators in the context of finite elements with continuous strain fields.• Illustrates an enhanced interpretation of the current space–time front.• Provides a strategy for estimating the critical time step size using CAG elements, nodal integration or SFEM.

[1]  Peter Wriggers,et al.  A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method , 2012 .

[2]  Gerhard A. Holzapfel,et al.  Subdivision schemes for smooth contact surfaces of arbitrary mesh topology in 3D , 2004 .

[3]  M. Puso,et al.  A 3D contact smoothing method using Gregory patches , 2002 .

[4]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[5]  Jens Markus Melenk,et al.  Mortar methods with curved interfaces , 2005 .

[6]  Peter Wriggers,et al.  Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS , 2012 .

[7]  M. S. Warren,et al.  A parallel hashed Oct-Tree N-body algorithm , 1993, Supercomputing '93.

[8]  J. A. Sethian,et al.  Fast Marching Methods , 1999, SIAM Rev..

[9]  P. Wriggers,et al.  Smooth C1‐interpolations for two‐dimensional frictional contact problems , 2001 .

[10]  P. Wriggers,et al.  A C1-continuous formulation for 3D finite deformation frictional contact , 2002 .

[11]  S. Wang,et al.  The inside–outside contact search algorithm for finite element analysis , 1997 .

[12]  Alexander Konyukhov,et al.  On the solvability of closest point projection procedures in contact analysis: Analysis and solution strategy for surfaces of arbitrary geometry , 2008 .

[13]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[14]  Peter Wriggers,et al.  Contact treatment in isogeometric analysis with NURBS , 2011 .

[15]  Sebastian Wolff,et al.  A finite element method based on C0‐continuous assumed gradients , 2011 .

[16]  Matthew West,et al.  Decomposition contact response (DCR) for explicit finite element dynamics , 2005, International Journal for Numerical Methods in Engineering.

[17]  J. Remacle,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[18]  Larsgunnar Nilsson,et al.  The position code algorithm for contact searching , 1994 .

[19]  Philip M. Hubbard,et al.  Collision Detection for Interactive Graphics Applications , 1995, IEEE Trans. Vis. Comput. Graph..

[20]  Barbara Wohlmuth,et al.  Stable Lagrange multipliers for quadrilateral meshes of curved interfaces in 3D , 2007 .

[21]  J. Marsden,et al.  Time‐discretized variational formulation of non‐smooth frictional contact , 2002 .

[22]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[23]  R. Diekmann,et al.  EFFICIENT CONTACT SEARCH FOR FINITE ELEMENT ANALYSIS , 2000 .

[24]  M. Puso,et al.  A mortar segment-to-segment contact method for large deformation solid mechanics , 2004 .

[25]  J. Sethian,et al.  Numerical Schemes for the Hamilton-Jacobi and Level Set Equations on Triangulated Domains , 1998 .

[26]  Carol O'Sullivan,et al.  Sphere-tree construction using dynamic medial axis approximation , 2002, SCA '02.

[27]  J. Dolbow,et al.  An assumed‐gradient finite element method for the level set equation , 2005 .

[28]  Dinesh Manocha,et al.  OBBTree: a hierarchical structure for rapid interference detection , 1996, SIGGRAPH.

[29]  Markus H. Gross,et al.  Consistent penetration depth estimation for deformable collision response , 2004, VMV.

[30]  David J. Benson,et al.  Sliding interfaces with contact-impact in large-scale Lagrangian computations , 1985 .

[31]  Sebastian Wolff,et al.  Asynchronous collision integrators: Explicit treatment of unilateral contact with friction and nodal restraints , 2013, International journal for numerical methods in engineering.

[32]  T. Belytschko,et al.  A monolithic smoothing‐gap algorithm for contact‐impact based on the signed distance function , 2002 .

[33]  Gino van den Bergen Efficient Collision Detection of Complex Deformable Models using AABB Trees , 1997, J. Graphics, GPU, & Game Tools.

[34]  Shaker A. Meguid,et al.  On the modelling of smooth contact surfaces using cubic splines , 2001 .

[35]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Damien Marchal,et al.  Collision between deformable objects using fast-marching on tetrahedral models , 2004, SCA '04.

[37]  Susan Fisher,et al.  An improved finite-element contact model for anatomical simulations , 2003, The Visual Computer.

[38]  Gerhard A. Holzapfel,et al.  Cn continuous modelling of smooth contact surfaces using NURBS and application to 2D problems , 2003 .

[39]  Ming C. Lin,et al.  Deformed distance fields for simulation of non-penetrating flexible bodies , 2001 .

[40]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[41]  David J. Benson,et al.  A single surface contact algorithm for the post-buckling analysis of shell structures , 1990 .

[42]  E. A. Repetto,et al.  Finite element analysis of nonsmooth contact , 1999 .

[43]  Joseph S. B. Mitchell,et al.  Efficient Collision Detection Using Bounding Volume Hierarchies of k-DOPs , 1998, IEEE Trans. Vis. Comput. Graph..