Branch decompositions and minor containment

Given a simple graph G, a simple connected graph H, and a branch decomposition of G of width k, we present a practical algorithm to test if H is a minor of G. The notion of branch decompositions and its related connectivity invariant for graphs, branchwidth, were introduced by Robertson and Seymour. The algorithm that we present follows the general framework for such an algorithm sketched by Robertson and Seymour with the addition of pruning techniques for runtime speedup. © 2003 Wiley Periodicals, Inc.

[1]  Illya V. Hicks Branch decompositions and their applications , 2000 .

[2]  Robin Thomas,et al.  Graph Searching and a Min-Max Theorem for Tree-Width , 1993, J. Comb. Theory, Ser. B.

[3]  Hisao Tamaki A Linear Time Heuristic for the Branch-Decomposition of Planar Graphs , 2003, ESA.

[4]  David S. Johnson,et al.  Cliques, Coloring, and Satisfiability , 1996 .

[5]  Hans L. Bodlaender,et al.  A Tourist Guide through Treewidth , 1993, Acta Cybern..

[6]  Bert Gerards,et al.  Branch-Width and Well-Quasi-Ordering in Matroids and Graphs , 2002, J. Comb. Theory, Ser. B.

[7]  John Maharry,et al.  An excluded minor theorem for the octahedron , 1999, J. Graph Theory.

[8]  Jan Arne Telle,et al.  Algorithms for Vertex Partitioning Problems on Partial k-Trees , 1997, SIAM J. Discret. Math..

[9]  Hajo Broersma,et al.  Preface: Volume 8 , 2001, Electron. Notes Discret. Math..

[10]  Dimitrios M. Thilikos,et al.  Constructive Linear Time Algorithms for Branchwidth , 1997, ICALP.

[11]  Jan Kratochvíl,et al.  New Branchwidth Territories , 1999, STACS.

[12]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[13]  Craig A. Tovey,et al.  Automatic generation of linear-time algorithms from predicate calculus descriptions of problems on recursively constructed graph families , 1992, Algorithmica.

[14]  Illya V. Hicks,et al.  Planar Branch Decompositions I: The Ratcatcher , 2005, INFORMS J. Comput..

[15]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[16]  H. L. Bodlaender,et al.  Treewidth: Algorithmic results and techniques , 1997 .

[17]  Ton Kloks,et al.  Efficient and Constructive Algorithms for the Pathwidth and Treewidth of Graphs , 1993, J. Algorithms.

[18]  John Maharry An excluded minor theorem for the octahedron , 1999 .

[19]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[20]  Mikkel Thorup,et al.  All Structured Programs have Small Tree-Width and Good Register Allocation , 1998, Inf. Comput..

[21]  Paul D. Seymour,et al.  Graph minors. X. Obstructions to tree-decomposition , 1991, J. Comb. Theory, Ser. B.

[22]  Rolf Niedermeier,et al.  Improved Tree Decomposition Based Algorithms for Domination-like Problems , 2002, LATIN.

[23]  William J. Cook,et al.  Linear-time algorithms for graphs with bounded branchwidth , 2003 .

[24]  Siddharthan Ramachandramurthi,et al.  The Structure and Number of Obstructions to Treewidth , 1997, SIAM J. Discret. Math..

[25]  Bruce A. Reed,et al.  Finding approximate separators and computing tree width quickly , 1992, STOC '92.

[26]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[27]  Carsten Thomassen A Simpler Proof of the Excluded Minor Theorem for Higher Surfaces , 1997, J. Comb. Theory, Ser. B.

[28]  P. Seymour,et al.  Surveys in combinatorics 1985: Graph minors – a survey , 1985 .

[29]  Robin Thomas,et al.  A menger-like property of tree-width: The finite case , 1990, J. Comb. Theory, Ser. B.

[30]  Robin Thomas,et al.  Recent Excluded Minor Theorems , 2022 .

[31]  Illya V. Hicks Planar Branch Decompositions II: The Cycle Method , 2005, INFORMS J. Comput..

[32]  Paul D. Seymour,et al.  Tour Merging via Branch-Decomposition , 2003, INFORMS J. Comput..

[33]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[34]  Dimitrios M. Thilikos,et al.  Graphs with Branchwidth at Most Three , 1999, J. Algorithms.

[35]  Paul D. Seymour,et al.  Graph minors. I. Excluding a forest , 1983, J. Comb. Theory, Ser. B.

[36]  M. Trick,et al.  Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, Workshop, October 11-13, 1993 , 1996 .

[37]  Robin Thomas,et al.  Call routing and the ratcatcher , 1994, Comb..

[38]  Detlef Seese,et al.  Easy Problems for Tree-Decomposable Graphs , 1991, J. Algorithms.