Polynomial Preconditioned GMRES in Trilinos: Practical Considerations for High-Performance Computing

Polynomial preconditioners for GMRES and other Krylov solvers are well-known but are infrequently used in largescale software libraries or applications. This may be due to stability problems or complicated algorithms. We implement the GMRES polynomial as a preconditioner in the software library Trilinos and demonstrate that it is stable and effective for parallel computing. Trade-offs when selecting a polynomial degree and combining with other preconditioners are analyzed. We also discuss communication-avoiding (CA) properties of the polynomial and relate these to current

[1]  Mark Hoemmen,et al.  Communication-avoiding Krylov subspace methods , 2010 .

[2]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[3]  D. O’Leary Yet another polynomial preconditioner for the conjugate gradient algorithm , 1991 .

[4]  Yousef Saad,et al.  GPU-accelerated preconditioned iterative linear solvers , 2013, The Journal of Supercomputing.

[5]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[6]  Tamara G. Kolda,et al.  An overview of the Trilinos project , 2005, TOMS.

[7]  Chao Yang,et al.  A Thick-Restart Lanczos Algorithm with Polynomial Filtering for Hermitian Eigenvalue Problems , 2015, SIAM J. Sci. Comput..

[8]  Joseph Euzebe Tate,et al.  Polynomial Preconditioning of Power System Matrices with Graphics Processing Units , 2013 .

[9]  H. Thornquist Fixed-Polynomial Approximate Spectral Transformations for Preconditioning the Eigenvalue Problem , 2006 .

[10]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[11]  Marek Szularz,et al.  Generalized least-squares polynomial preconditioners for symmetric indefinite linear equations , 2002, Parallel Comput..

[12]  M. B. Van Gijzen,et al.  A polynomial preconditioner for the GMRES algorithm , 1995 .

[13]  C. Micchelli,et al.  Polynomial Preconditioners for Conjugate Gradient Calculations , 1983 .

[14]  H. Rutishauser Theory of Gradient Methods , 1959 .

[15]  Lei Zhang,et al.  Efficient CUDA Polynomial Preconditioned Conjugate Gradient Solver for Finite Element Computation of Elasticity Problems , 2013 .

[16]  Y. Saad,et al.  Practical Use of Polynomial Preconditionings for the Conjugate Gradient Method , 1985 .

[17]  Laurence T. Yang,et al.  Finite-element-wise domain decomposition iterative solvers with polynomial preconditioning , 2013, Math. Comput. Model..

[18]  Ronald B. Morgan,et al.  New Polynomial Preconditioned GMRES , 2019, ArXiv.

[19]  S. Ashby Polynomial Preconditioning for Conjugate Gradient Methods , 1988 .

[20]  B. Eng,et al.  The Use of Parallel Polynomial Preconditioners in the Solution of Systems of Linear Equations , 2005 .

[21]  Wim Vanroose,et al.  Hiding Global Communication Latency in the GMRES Algorithm on Massively Parallel Machines , 2013, SIAM J. Sci. Comput..

[22]  D. Hut A Newton Basis Gmres Implementation , 1991 .

[23]  Ronald B. Morgan,et al.  Polynomial Preconditioned GMRES and GMRES-DR , 2015, SIAM J. Sci. Comput..

[24]  Wayne Joubert,et al.  A Robust GMRES-Based Adaptive Polynomial Preconditioning Algorithm for Nonsymmetric Linear Systems , 1994, SIAM J. Sci. Comput..

[25]  Ronald B. Morgan,et al.  Improved seed methods for symmetric positive definite linear equations with multiple right‐hand sides , 2008, Numer. Linear Algebra Appl..