Applying a Computational Model Credibility Framework to Physiological Closed-Loop Controlled Medical Device Testing

Physiological closed-loop controlled medical devices are safety-critical systems that combine patient monitors with therapy delivery devices to automatically titrate therapy to meet a patient's current need. Computational models of physiological systems can be used to test these devices and generate pre-clinical evidence of safety and performance before using the devices on patients. The credibility, utility, and acceptability of such model-based test results will depend on, among other factors, the computational model used. We examine how a recently developed risk-informed framework for establishing the credibility of computational models in medical device applications can be applied in the evaluation of physiological closed-loop controlled devices.