Gap sets for the spectra of cubic graphs

<p>We study gaps in the spectra of the adjacency matrices of large finite cubic graphs. It is known that the gap intervals <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis 2 StartRoot 2 EndRoot comma 3 right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mn>2</mml:mn> <mml:msqrt> <mml:mn>2</mml:mn> </mml:msqrt> <mml:mo>,</mml:mo> <mml:mn>3</mml:mn> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(2 \sqrt {2},3)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-bracket negative 3 comma negative 2 right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">[</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mn>3</mml:mn> <mml:mo>,</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">[-3,-2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> achieved in cubic Ramanujan graphs and line graphs are maximal. We give constraints on spectra in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-bracket negative 3 comma 3 right-bracket"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">[</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mn>3</mml:mn> <mml:mo>,</mml:mo> <mml:mn>3</mml:mn> <mml:mo stretchy="false">]</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">[-3,3]</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which are maximally gapped and construct examples which achieve these bounds. These graphs yield new instances of maximally gapped intervals. We also show that every point in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-bracket negative 3 comma 3 right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">[</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mn>3</mml:mn> <mml:mo>,</mml:mo> <mml:mn>3</mml:mn> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">[-3,3)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> can be gapped by planar cubic graphs. Our results show that the study of spectra of cubic, and even planar cubic, graphs is subtle and very rich.</p>

[1]  J. Geronimo,et al.  ORTHOGONAL POLYNOMIALS ON SEVERAL INTERVALS VIA A POLYNOMIAL MAPPING , 1988 .

[2]  P. W. Fowler Fullerene graphs with more negative than positiveeigenvalues: The exceptions that prove the rule of electrondeficiency? , 1997 .

[3]  Bojan Mohar Median Eigenvalues of Bipartite Subcubic Graphs , 2016, Comb. Probab. Comput..

[4]  O. J. Heilmann,et al.  Theory of monomer-dimer systems , 1972 .

[5]  A. Terras,et al.  Zeta functions of finite graphs and coverings, III , 1996 .

[6]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[7]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[8]  Miklós Abért,et al.  On the growth of $L^2$-invariants for sequences of lattices in Lie groups , 2012, 1210.2961.

[9]  D. Cvetkovic,et al.  Spectra of Graphs: Theory and Applications , 1997 .

[10]  A. Terras,et al.  Zeta Functions of Finite Graphs and Coverings , 1996 .

[11]  J. Seidel,et al.  Line graphs, root systems, and elliptic geometry , 1976 .

[12]  P. Sarnak,et al.  On Selberg's eigenvalue conjecture , 1995 .

[13]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[14]  Jean-Pierre Serre Distribution asymptotique des valeurs propres des endomorphismes de Frobenius d'après Abel, Chebyshev, Robinson,... , 2018, Astérisque.

[15]  S. Girvin,et al.  Modern Condensed Matter Physics , 2019 .

[16]  D. R. Woodall,et al.  Electronic stability of fullerenes: eigenvalue theorems for leapfrog carbon clusters , 1992 .

[17]  A. Lubotzky,et al.  Ramanujan graphs , 2017, Comb..

[18]  L. Ahlfors Conformal Invariants: Topics in Geometric Function Theory , 1973 .

[19]  Harry Kesten,et al.  Symmetric random walks on groups , 1959 .

[20]  B. Mohar,et al.  Large regular bipartite graphs with median eigenvalue 1 , 2014 .

[21]  M. Tsfasman,et al.  Asymptotic properties of zeta-functions , 1997 .

[22]  A. Nilli On the second eigenvalue of a graph , 1991 .

[23]  Patrick Chiu,et al.  Cubic Ramanujan graphs , 1992, Comb..

[24]  László Lovász,et al.  Large Networks and Graph Limits , 2012, Colloquium Publications.

[25]  M. Fekete Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten , 1918 .

[26]  Yair Glasner,et al.  The measurable Kesten theorem , 2011, 1111.2080.

[27]  Jean-Pierre Serre,et al.  Répartition asymptotique des valeurs propres de l’opérateur de Hecke _ , 1997 .

[28]  Alicia J. Koll'ar,et al.  Line-Graph Lattices: Euclidean and Non-Euclidean Flat Bands, and Implementations in Circuit Quantum Electrodynamics , 2019, Communications in Mathematical Physics.

[29]  Z. Sunic,et al.  Schreier spectrum of the Hanoi Towers group on three pegs , 2007, 0711.0068.

[30]  W. T. Tutte On Hamiltonian Circuits , 1946 .

[31]  Nikhil Srivastava,et al.  Interlacing Families I: Bipartite Ramanujan Graphs of All Degrees , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[32]  Nicholas C. Wormald,et al.  Almost All Cubic Graphs Are Hamiltonian , 1992, Random Struct. Algorithms.

[33]  C. Kuratowski Sur le problème des courbes gauches en Topologie , 1930 .

[34]  R. Robinson Conjugate algebraic integers in real point sets , 1964 .