First structural model of full-length human tissue-plasminogen activator: a SAXS data-based modeling study.

Human tissue-plasminogen activator (t-PA) is a multidomain glycoprotein which holds high biomedical value due to its therapeutic role in clot-specific fibrinolysis. Although atomic-resolution structures of individual domains except Kringle1 are available, no structural information is available on how these domains and glycosylation are oriented in space relative to each other in the full-length protein. SAXS intensity profile acquired from samples of t-PA was used to "steer" structures of individual domains and the homology model of the first kringle domain to generate a structural model of the protein part of t-PA. Differences in the shape profiles of SAXS data-based dummy atom and proteinogenic models aided in grafting glycosylated moieties on the coordinates of t-PA. According to previously reported mutagenesis-rendered altered functional profiles, normal-mode analysis of our model revealed that the fibrin binding F/E domains "communicate" with the active-site in the P domain via Kringle2, while Kringle1 is positioned away from these long-distance interactions.

[1]  L. H. Schulman Structure and function of Escherichia coli formylmethionine transfer RNA. II. Effect of modification of guanosine residues on aminoacyl synthetase recognition. , 1971, Journal of molecular biology.

[2]  D. Rijken,et al.  Relationship between tissue plasminogen activator and the activators in blood and vascular wall. , 1980, Thrombosis research.

[3]  M. Hoylaerts,et al.  Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin. , 1982, The Journal of biological chemistry.

[4]  M. Rånby,et al.  Isolation of two variants of native one‐chain tissue plasminogen activator , 1982, FEBS letters.

[5]  P. Seeburg,et al.  Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli , 1983, Nature.

[6]  H. Jörnvall,et al.  Tissue plasminogen activator: peptide analyses confirm an indirectly derived amino acid sequence, identify the active site serine residue, establish glycosylation sites, and localize variant differences. , 1984, Biochemistry.

[7]  S. Pizzo,et al.  Catabolism of human tissue plasminogen activator in mice. , 1985 .

[8]  M. Einarsson,et al.  Large-scale purification of human tissue-type plasminogen activator using monoclonal antibodies. , 1985, Biochimica et biophysica acta.

[9]  A. V. van Zonneveld,et al.  Autonomous functions of structural domains on human tissue-type plasminogen activator. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[10]  R. Smith,et al.  An active-site titrant for human tissue-type plasminogen activator. , 1986, The Biochemical journal.

[11]  G. Larsen,et al.  Functional effects of asparagine-linked oligosaccharide on natural and variant human tissue-type plasminogen activator. , 1988, The Journal of biological chemistry.

[12]  R. Dwek,et al.  Effects of N-glycosylation on in vitro activity of Bowes melanoma and human colon fibroblast derived tissue plasminogen activator. , 1989, Biochemistry.

[13]  M. Llinás,et al.  Solution structure of the tissue-type plasminogen activator kringle 2 domain complexed to 6-aminohexanoic acid an antifibrinolytic drug. , 1991, Journal of molecular biology.

[14]  D. Collen,et al.  Strategies for the Improvement of Thrombolytic Agents , 1991, Thrombosis and Haemostasis.

[15]  M. Ultsch,et al.  Crystal structure of the kringle 2 domain of tissue plasminogen activator at 2.4-A resolution. , 1992, Biochemistry.

[16]  Dmitri I. Svergun,et al.  Determination of the regularization parameter in indirect-transform methods using perceptual criteria , 1992 .

[17]  I. Campbell,et al.  Solution structure of the fibrin binding finger domain of tissue-type plasminogen activator determined by 1H nuclear magnetic resonance. , 1994, Journal of molecular biology.

[18]  D. Botstein,et al.  A faster-acting and more potent form of tissue plasminogen activator. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[19]  H. Naim,et al.  Intracellular Folding of Tissue-type Plasminogen Activator , 1995, The Journal of Biological Chemistry.

[20]  I. Campbell,et al.  The solution structure and backbone dynamics of the fibronectin type I and epidermal growth factor-like pair of modules of tissue-type plasminogen activator. , 1995, Structure.

[21]  D. Svergun,et al.  CRYSOL : a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates , 1995 .

[22]  R. Dwek,et al.  The Activation of Type 1 and Type 2 Plasminogen by Type I and Type II Tissue Plasminogen Activator (*) , 1995, The Journal of Biological Chemistry.

[23]  E. Madison,et al.  Variants of Tissue-type Plasminogen Activator Which Display Substantially Enhanced Stimulation by Fibrin (*) , 1995, The Journal of Biological Chemistry.

[24]  D Lamba,et al.  The 2.3 A crystal structure of the catalytic domain of recombinant two-chain human tissue-type plasminogen activator. , 1996, Journal of molecular biology.

[25]  R. Huber,et al.  Lysine 156 promotes the anomalous proenzyme activity of tPA: X‐ray crystal structure of single‐chain human tPA , 1997, The EMBO journal.

[26]  R. Huber,et al.  Catalytic domain structure of vampire bat plasminogen activator: a molecular paradigm for proteolysis without activation cleavage. , 1997, Biochemistry.

[27]  D I Svergun,et al.  Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. , 1999, Biophysical journal.

[28]  R. Mattes,et al.  The Production of Improved Tissue-Type Plasminogen Activator in Escherichia coli , 2001, Seminars in thrombosis and hemostasis.

[29]  Dmitri I. Svergun,et al.  Automated matching of high- and low-resolution structural models , 2001 .

[30]  Dmitri I. Svergun,et al.  PRIMUS: a Windows PC-based system for small-angle scattering data analysis , 2003 .

[31]  Dmitri I. Svergun,et al.  Uniqueness of ab initio shape determination in small-angle scattering , 2003 .

[32]  Karsten Suhre,et al.  ElNémo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement , 2004, Nucleic Acids Res..

[33]  Claus-Wilhelm von der Lieth,et al.  GlyProt: in silico glycosylation of proteins , 2005, Nucleic Acids Res..

[34]  Dmitri I Svergun,et al.  Global rigid body modeling of macromolecular complexes against small-angle scattering data. , 2005, Biophysical journal.

[35]  C. D. Boone,et al.  Global structure of HIV-1 neutralizing antibody IgG1 b12 is asymmetric. , 2010, Biochemical and biophysical research communications.

[36]  K. Goa,et al.  Tissue-Type Plasminogen Activator , 1989, Drugs.