Lie algebras, modules, dual quaternions and algebraic methods in kinematics
暂无分享,去创建一个
[1] M. Hiller,et al. A unified representation of spatial displacements , 1984 .
[2] Kenneth H. Hunt. Special configurations of robot-arms via screw theory , 1986, Robotica.
[3] Om P. Agrawal,et al. Hamilton operators and dual-number-quaternions in spatial kinematics , 1987 .
[4] Joseph Duffy,et al. Special configurations of spatial mechanisms and robot arms , 1982 .
[5] G. R. Pennock,et al. Dynamic Analysis of a Multi-Rigid-Body Open-Chain System , 1983 .
[6] A. T. Yang,et al. Application of Dual-Number Quaternion Algebra to the Analysis of Spatial Mechanisms , 1964 .
[7] J. Hervé. Analyse structurelle des mcanismes par groupe des dplacements , 1978 .
[8] Andrew A. Goldenberg,et al. Formulation of the kinematic model of a general (6 DOF) robot manipulator using a screw operator , 1987, J. Field Robotics.
[9] K. Sugimoto,et al. Application of linear algebra to screw systems , 1982 .
[10] C. Chevalley. Theory of Lie Groups , 1946 .
[11] Pietro Fanghella,et al. Kinematics of spatial linkages by group algebra: A structure-based approach , 1988 .
[12] J. M. Hervé. Intrinsic formulation of problems of geometry and kinematics of mechanisms , 1982 .
[13] Gr Geert Veldkamp. On the use of dual numbers, vectors and matrices in instantaneous, spatial kinematics , 1976 .
[14] K. Sugimoto,et al. Determination of Joint Velocities of Robots by Using Screws , 1984 .
[15] K. H. Hunt,et al. Geometry—The key to Mechanical movements , 1976 .