External flow radiators for reduced space powerplant temperatures. Technical information report

Nuclear space powerplants can operate at temperatures below 900 K and use stainless steel construction without a weight penalty if new radiator concepts can achieve radiator weights of 1-3 kg/m{sup 2}. Conventional tube-and-fin radiators weight about 10 kg/m{sup 2} because of heavy tube walls to prevent meteroid puncture. Radiator designs that do not require meteroid protection are possible; they operate with fluids of low vapor pressure that can be exposed directly to space in external-flow radiators. An example is the {open_quotes}rotating disk radiator{close_quotes} in which centrifugal force drives a liquid film radially outward across a thin rotating metal disk; meteroid punctures cause no loss of fluid other than from evaporation, which can be small. An even lighter concept is the liquid drop radiator in which heat is radiated directly from moving liquid drops. Such radiator concepts look practical, and they may be much easier to develop than the high-temperature, refractory-metal power systems necessitated by conventional radiators.