BET Bromodomain Inhibition as a Therapeutic Strategy to Target c-Myc

[1]  K. Valerie,et al.  Subcutaneous administration of D-luciferin is an effective alternative to intraperitoneal injection in bioluminescence imaging of xenograft tumors in nude mice. , 2013, ISRN Molecular Imaging.

[2]  C. J. Gordon,et al.  Baseline tumor growth and immune control in laboratory mice are significantly influenced by subthermoneutral housing temperature , 2013, Proceedings of the National Academy of Sciences.

[3]  T. Errington,et al.  Study 19: Replication of Delmore et al., 2011 (Cell) , 2013 .

[4]  L. Fu,et al.  The circadian clock in cancer development and therapy. , 2013, Progress in molecular biology and translational science.

[5]  Deepak Padmanabhan,et al.  A review of drug isomerism and its significance , 2013, International journal of applied & basic medical research.

[6]  Jukka Corander,et al.  Improved Statistical Modeling of Tumor Growth and Treatment Effect in Preclinical Animal Studies with Highly Heterogeneous Responses In Vivo , 2012, Clinical Cancer Research.

[7]  D. Vaux,et al.  Replicates and repeats—what is the difference and is it significant? , 2012, EMBO reports.

[8]  A. Bossuyt,et al.  Inhibition of Firefly Luciferase by General Anesthetics: Effect on In Vitro and In Vivo Bioluminescence Imaging , 2012, PloS one.

[9]  S. Lowe,et al.  RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia , 2011, Nature.

[10]  T. Graeber,et al.  An integrated approach to dissecting oncogene addiction implicates a Myb-coordinated self-renewal program as essential for leukemia maintenance. , 2011, Genes & development.

[11]  Jennifer A. Smith,et al.  The Brd4 Extraterminal Domain Confers Transcription Activation Independent of pTEFb by Recruiting Multiple Proteins, Including NSD3 , 2011, Molecular and Cellular Biology.

[12]  G. Mulligan,et al.  Clinical and Biological Implications of MYC Activation: A common difference between MGUS and newly diagnosed multiple myeloma , 2011, Leukemia.

[13]  Trevor J Pugh,et al.  Initial genome sequencing and analysis of multiple myeloma , 2011, Nature.

[14]  Tingting Xu,et al.  In Vivo Bioluminescent Imaging (BLI): Noninvasive Visualization and Interrogation of Biological Processes in Living Animals , 2010, Sensors.

[15]  C. Rice,et al.  Suppression of inflammation by a synthetic histone mimic , 2010, Nature.

[16]  Y. Naomoto,et al.  Inhibition of Myc effectively targets KRAS mutation-positive lung cancer expressing high levels of Myc. , 2010, Anticancer research.

[17]  William B. Smith,et al.  Selective inhibition of BET bromodomains , 2010, Nature.

[18]  Wolfgang Viechtbauer,et al.  Conducting Meta-Analyses in R with the metafor Package , 2010 .

[19]  Chul-hak Yang,et al.  Small-molecule inhibitors of c-Myc transcriptional factor suppress proliferation and induce apoptosis of promyelocytic leukemia cell via cell cycle arrest. , 2010, Molecular bioSystems.

[20]  Kuni Ohtomo,et al.  Timing of Imaging after D-Luciferin Injection Affects the Longitudinal Assessment of Tumor Growth Using In Vivo Bioluminescence Imaging , 2010, Int. J. Biomed. Imaging.

[21]  Christopher B. Burge,et al.  c-Myc Regulates Transcriptional Pause Release , 2010, Cell.

[22]  K. Anderson,et al.  Tumor cell-specific bioluminescence platform to identify stroma-induced changes to anti-cancer drug activity , 2010, Nature Medicine.

[23]  Stephen V Frye,et al.  The art of the chemical probe. , 2010, Nature chemical biology.

[24]  Derek Y. Chiang,et al.  The landscape of somatic copy-number alteration across human cancers , 2010, Nature.

[25]  K. Ozato,et al.  Brd4 marks select genes on mitotic chromatin and directs postmitotic transcription. , 2009, Molecular biology of the cell.

[26]  C. Dang,et al.  MYC-Induced Cancer Cell Energy Metabolism and Therapeutic Opportunities , 2009, Clinical Cancer Research.

[27]  C. Dang MYC, microRNAs and glutamine addiction in cancers , 2009, Cell cycle.

[28]  P. Kantoff,et al.  Evaluation of the 8q24 prostate cancer risk locus and MYC expression. , 2009, Cancer research.

[29]  Ariele Viacava Follis,et al.  Multiple independent binding sites for small-molecule inhibitors on the oncoprotein c-Myc. , 2009, Journal of the American Chemical Society.

[30]  Charles P. Lin,et al.  CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. , 2009, Blood.

[31]  G. Bidwell,et al.  Targeting a c-Myc inhibitory polypeptide to specific intracellular compartments using cell penetrating peptides. , 2009, Journal of controlled release : official journal of the Controlled Release Society.

[32]  S. Legartová,et al.  Nuclear topography of the 1q21 genomic region and Mcl-1 protein levels associated with pathophysiology of multiple myeloma. , 2009, Neoplasma.

[33]  L. Staudt,et al.  IRF4 addiction in multiple myeloma , 2008, Nature.

[34]  P. L. Bergsagel,et al.  Characterization of MYC translocations in multiple myeloma cell lines. , 2008, Journal of the National Cancer Institute. Monographs.

[35]  S. Orkin,et al.  An Extended Transcriptional Network for Pluripotency of Embryonic Stem Cells , 2008, Cell.

[36]  P. L. Bergsagel,et al.  AID-dependent activation of a MYC transgene induces multiple myeloma in a conditional mouse model of post-germinal center malignancies. , 2008, Cancer cell.

[37]  Marleen Keyaerts,et al.  Dynamic bioluminescence imaging for quantitative tumour burden assessment using IV or IP administration of d-luciferin: effect on intensity, time kinetics and repeatability of photon emission , 2008, European Journal of Nuclear Medicine and Molecular Imaging.

[38]  H. Parkes,et al.  The costs of using unauthenticated, over-passaged cell lines: how much more data do we need? , 2007, BioTechniques.

[39]  Shingo Baba,et al.  How Reproducible Is Bioluminescent Imaging of Tumor Cell Growth? Single Time Point versus the Dynamic Measurement Approach , 2007, Molecular imaging.

[40]  T. Mahmoudi,et al.  Conserved P-TEFb-interacting domain of BRD4 inhibits HIV transcription , 2007, Proceedings of the National Academy of Sciences.

[41]  L. Bruhn,et al.  Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. , 2007, Cancer cell.

[42]  Dean W. Felsher,et al.  Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation , 2007, Proceedings of the National Academy of Sciences.

[43]  Kenneth C. Anderson,et al.  Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets , 2007, Nature Reviews Cancer.

[44]  Eric S. Lander,et al.  Integrative Genomic Approaches Identify IKBKE as a Breast Cancer Oncogene , 2007, Cell.

[45]  S. Trudel,et al.  The Bcl-2 Family Protein Inhibitor, ABT-737, Has Substantial Antimyeloma Activity and Shows Synergistic Effect with Dexamethasone and Melphalan , 2007, Clinical Cancer Research.

[46]  David R Williams,et al.  Gene-expression signature of benign monoclonal gammopathy evident in multiple myeloma is linked to good prognosis. , 2006, Blood.

[47]  Cheng Li,et al.  Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.

[48]  C. Pham-Huy,et al.  Chiral Drugs: An Overview , 2006, International journal of biomedical science : IJBS.

[49]  Anne E Carpenter,et al.  A Lentiviral RNAi Library for Human and Mouse Genes Applied to an Arrayed Viral High-Content Screen , 2006, Cell.

[50]  Robert Nadon,et al.  Statistical practice in high-throughput screening data analysis , 2006, Nature Biotechnology.

[51]  R Tibshirani,et al.  Combined microarray analysis of small cell lung cancer reveals altered apoptotic balance and distinct expression signatures of MYC family gene amplification , 2006, Oncogene.

[52]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[53]  S. Korsmeyer,et al.  An inhibitor of Bcl-2 family proteins induces regression of solid tumours , 2005, Nature.

[54]  S. Bicciato,et al.  Gene expression profiling of plasma cell dyscrasias reveals molecular patterns associated with distinct IGH translocations in multiple myeloma , 2005, Oncogene.

[55]  U. Weidle,et al.  Dissection of transcriptional programmes in response to serum and c-Myc in a human B-cell line , 2005, Oncogene.

[56]  Gordon K. Smyth,et al.  limma: Linear Models for Microarray Data , 2005 .

[57]  T. Libermann,et al.  Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. , 2004, Cancer cell.

[58]  L. Staudt,et al.  Overexpression of c-maf is a frequent oncogenic event in multiple myeloma that promotes proliferation and pathological interactions with bone marrow stroma. , 2004, Cancer cell.

[59]  Kathryn A. O’Donnell,et al.  An integrated database of genes responsive to the Myc oncogenic transcription factor: identification of direct genomic targets , 2003, Genome Biology.

[60]  D. Livingston,et al.  MYC recruits the TIP60 histone acetyltransferase complex to chromatin , 2003, EMBO reports.

[61]  B. Lüscher,et al.  Stimulation of c‐MYC transcriptional activity and acetylation by recruitment of the cofactor CBP , 2003, EMBO reports.

[62]  Itaru Matsumura,et al.  E2F1 and c-Myc in Cell Growth and Death , 2003, Cell cycle.

[63]  Rafael A Irizarry,et al.  Exploration, normalization, and summaries of high density oligonucleotide array probe level data. , 2003, Biostatistics.

[64]  Patrick J. Paddison,et al.  An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo , 2003, Nature Genetics.

[65]  T. Speed,et al.  Summaries of Affymetrix GeneChip probe level data. , 2003, Nucleic acids research.

[66]  Stephen K. Burley,et al.  X-Ray Structures of Myc-Max and Mad-Max Recognizing DNA Molecular Bases of Regulation by Proto-Oncogenic Transcription Factors , 2003, Cell.

[67]  Terence P. Speed,et al.  A comparison of normalization methods for high density oligonucleotide array data based on variance and bias , 2003, Bioinform..

[68]  S. Schreiber,et al.  Signaling Network Model of Chromatin , 2002, Cell.

[69]  T. Libermann,et al.  Molecular sequelae of proteasome inhibition in human multiple myeloma cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[70]  J. Darnell Transcription factors as targets for cancer therapy , 2002, Nature Reviews Cancer.

[71]  J. Woodgett,et al.  A molecular compendium of genes expressed in multiple myeloma. , 2002, Blood.

[72]  Kenneth Chu,et al.  Sustained Loss of a Neoplastic Phenotype by Brief Inactivation of MYC , 2002, Science.

[73]  L. Soucek,et al.  Omomyc, a potential Myc dominant negative, enhances Myc-induced apoptosis. , 2002, Cancer research.

[74]  Jeffrey M. Trimarchi,et al.  Transcription: Sibling rivalry in the E2F family , 2002, Nature Reviews Molecular Cell Biology.

[75]  U. Weidle,et al.  The transcriptional program of a human B cell line in response to Myc. , 2001, Nucleic acids research.

[76]  P. L. Bergsagel,et al.  Diverse karyotypic abnormalities of the c-myc locus associated with c-myc dysregulation and tumor progression in multiple myeloma. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[77]  Lei Zeng,et al.  Structure and ligand of a histone acetyltransferase bromodomain , 1999, Nature.

[78]  M. Helmer-Citterich,et al.  Design and properties of a Myc derivative that efficiently homodimerizes , 1998, Oncogene.

[79]  H. Mitsuya,et al.  Expression of Bcl-2 family of proteins in fresh myeloma cells , 1998, Leukemia.

[80]  Bruno Amati,et al.  Oncogenic activity of the c-Myc protein requires dimerization with Max , 1993, Cell.

[81]  I B Dawid,et al.  The bromodomain: a conserved sequence found in human, Drosophila and yeast proteins. , 1992, Nucleic acids research.

[82]  R. Eisenman,et al.  Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. , 1991, Science.

[83]  E. Thompson,et al.  Glucocorticoid effects on myeloma cells in culture: correlation of growth inhibition with induction of glucocorticoid receptor messenger RNA. , 1990, Cancer research.

[84]  A. Palumbo,et al.  Altered expression of growth-regulated protooncogenes in human malignant plasma cells. , 1989, Cancer research.

[85]  A. W. Harris,et al.  The E mu-myc transgenic mouse. A model for high-incidence spontaneous lymphoma and leukemia of early B cells , 1988, The Journal of experimental medicine.

[86]  P. Leder,et al.  Consequences of widespread deregulation of the c-myc gene in transgenic mice: Multiple neoplasms and normal development , 1986, Cell.

[87]  P. Leder,et al.  Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes , 1984, Cell.

[88]  G. Sonenshein,et al.  Transcriptional activation of immunoglobulin α heavy-chain genes by translocation of the c-myc oncogene , 1983, Nature.