Identification of linear parameter varying models

We consider identification of a certain class of discrete‐time nonlinear systems known as linear parameter varying system. We assume that inputs, outputs and the scheduling parameters are directly measured, and a form of the functional dependence of the system coefficients on the parameters is known. We show how this identification problem can be reduced to a linear regression, and provide compact formulae for the corresponding least mean square and recursive least‐squares algorithms. We derive conditions on persistency of excitation in terms of the inputs and scheduling parameter trajectories when the functional dependence is of polynomial type. These conditions have a natural polynomial interpolation interpretation, and do not require the scheduling parameter trajectories to vary slowly. This method is illustrated with a simulation example using two different parameter trajectories. Copyright © 2002 John Wiley & Sons, Ltd.

[1]  Wilson J. Rugh,et al.  Analytical Framework for Gain Scheduling , 1990, 1990 American Control Conference.

[2]  Michael Athans,et al.  Guaranteed properties of gain scheduled control for linear parameter-varying plants , 1991, Autom..

[3]  A. Packard Gain scheduling via linear fractional transformations , 1994 .

[4]  Marco C. Campi,et al.  Exponentially weighted least squares identification of time-varying systems with white disturbances , 1994, IEEE Trans. Signal Process..

[5]  P. Gahinet,et al.  A convex characterization of gain-scheduled H∞ controllers , 1995, IEEE Trans. Autom. Control..

[6]  R. Ravikanth,et al.  Identification of linear parametrically varying systems , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[7]  Tsu-Chin Tsao,et al.  Reducing Cutting Force Induced Bore Cylindricity Errors by Learning Control and Variable Depth of Cut Machining , 1998 .

[8]  Dapeng Xiong,et al.  Set-valued methods for linear parameter varying systems, , 1999, Autom..

[9]  M. Lovera,et al.  Identification of a class of linear models with nonlinearly varying parameters , 1999, 1999 European Control Conference (ECC).

[10]  Lawton H. Lee,et al.  Identification of Linear Parameter-Varying Systems Using Nonlinear Programming , 1999 .

[11]  Wilson J. Rugh,et al.  Research on gain scheduling , 2000, Autom..

[12]  Bassam Bamieh,et al.  LPV Model Identification For The Stall And Surge Control of a Jet Engine , 2001 .

[13]  Luigi Chisci,et al.  LPV predictive control of the stall and surge for jet engine , 2001 .