Formation Control of Mobile Robots

A constructive method is presented to design cooperative controllers that force a group of N mobile robots to achieve a particular formation in terms of shape and orientation while avoiding collisions between themselves. The control development is based on new local potential functions, which attain the minimum value when the desired formation is achieved, and are equal to infinity when a collision occurs. The proposed controller development is also extended to formation control of nonholonomic mobile robots.

[1]  Lynne E. Parker,et al.  ALLIANCE: an architecture for fault tolerant multirobot cooperation , 1998, IEEE Trans. Robotics Autom..

[2]  Christopher M. Clark,et al.  Motion planning for formations of mobile robots , 2004, Robotics Auton. Syst..

[3]  Randal W. Beard,et al.  A decentralized approach to formation maneuvers , 2003, IEEE Trans. Robotics Autom..

[4]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[5]  Roger Skjetne,et al.  Nonlinear formation control of marine craft , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[6]  D. Koditschek,et al.  Robot navigation functions on manifolds with boundary , 1990 .

[7]  Randal W. Beard,et al.  A coordination architecture for spacecraft formation control , 2001, IEEE Trans. Control. Syst. Technol..

[8]  K. D. Do,et al.  Global tracking control of underactuated ships with nonzero off-diagonal terms in their system matrices , 2005, Autom..

[9]  Petros A. Ioannou,et al.  New Potential Functions for Mobile Robot Path Planning , 2000 .

[10]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[11]  Vijay Kumar,et al.  Controlling formations of multiple mobile robots , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[12]  Ichiro Suzuki,et al.  Distributed algorithms for formation of geometric patterns with many mobile robots , 1996, J. Field Robotics.

[13]  Mehran Mesbahi,et al.  Formation flying control of multiple spacecraft via graphs , 2001 .

[14]  Naomi Ehrich Leonard,et al.  Virtual leaders, artificial potentials and coordinated control of groups , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[15]  Ichiro Suzuki,et al.  Distributed algorithms for formation of geometric patterns with many mobile robots , 1996, J. Field Robotics.

[16]  Rodney Teo,et al.  Decentralized overlapping control of a formation of unmanned aerial vehicles , 2004, Autom..

[17]  Zhong-Ping Jiang,et al.  A global output-feedback controller for simultaneous tracking and stabilization of unicycle-type mobile robots , 2004, IEEE Transactions on Robotics and Automation.

[18]  Wei Kang,et al.  Co-ordinated attitude control of multi-satellite systems† , 2002 .

[19]  Warren E. Dixon,et al.  Nonlinear Control of Wheeled Mobile Robots , 2001 .

[20]  Ching-Hung Lee,et al.  Adaptive tracking control of nonholonomic mobile robots by computed torque , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[21]  F. Y. Hadaegh,et al.  Formation Flying Control of Multiple Spacecraft , 1997 .

[22]  P. S. Krishnaprasad,et al.  Equilibria and steering laws for planar formations , 2004, Syst. Control. Lett..

[23]  Maja J. Mataric,et al.  Territorial multi-robot task division , 1998, IEEE Trans. Robotics Autom..

[24]  Wei Kang,et al.  Formation control of autonomous agents in 3D workspace , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[25]  P. Wang,et al.  Coordination and control of multiple microspacecraft moving in formation , 1996 .

[26]  D. Mayne Nonlinear and Adaptive Control Design [Book Review] , 1996, IEEE Transactions on Automatic Control.

[27]  Amit Kumar,et al.  Towards Decentralization of Multi-robot Navigation Functions , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[28]  Xiaoming Hu,et al.  A control Lyapunov function approach to multiagent coordination , 2002, IEEE Trans. Robotics Autom..

[29]  R. Beard,et al.  Formation feedback control for multiple spacecraft via virtual structures , 2004 .

[30]  Hiroaki Yamaguchi,et al.  Adaptive formation control for distributed autonomous mobile robot groups , 1997, Proceedings of International Conference on Robotics and Automation.

[31]  Kostas J. Kyriakopoulos,et al.  Nonholonomic navigation and control of cooperating mobile manipulators , 2003, IEEE Trans. Robotics Autom..

[32]  Kar-Han Tan,et al.  High Precision Formation Control of Mobile Robots Using Virtual Structures , 1997, Auton. Robots.

[33]  Tucker R. Balch,et al.  Behavior-based formation control for multirobot teams , 1998, IEEE Trans. Robotics Autom..

[34]  Paul Keng-Chieh Wang Navigation strategies for multiple autonomous mobile robots moving in formation , 1991, J. Field Robotics.

[35]  J. Y. S. Luh,et al.  Coordination and control of a group of small mobile robots , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[36]  Shuzhi Sam Ge,et al.  Dynamic Motion Planning for Mobile Robots Using Potential Field Method , 2002, Auton. Robots.

[37]  George J. Pappas,et al.  Stable flocking of mobile agents, part I: fixed topology , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[38]  Manuela M. Veloso,et al.  The CMUnited-97 robotic soccer team: perception and multiagent control , 1998, AGENTS '98.