On the Query Complexity of Perfect Gate Discrimination

We investigate the problem of finding the minimum number of queries needed to perfectly identify an unknown quantum gate within a finite set of alternatives, considering both deterministic strategies. For unambiguous gate discrimination, where errors are not tolerated but inconclusive outcomes are allowed, we prove that parallel strategies are sucient to identify the unknown gate with minimum number of queries and we use this fact to provide upper and lower bounds on the query complexity. In addition, we introduce the notion of generalized t-designs, which includes unitary t-designs and group representations as special cases. For gates forming a generalized t-design we prove that there is no dierence between perfect probabilistic and perfect deterministic gate discrimination. Hence, evaluating of the query complexity of perfect discrimination is reduced to the easier problem of evaluating the query complexity of unambiguous discrimination. 1998 ACM Subject Classification J.2 Physical sciences and engineering

[1]  A. Acín Statistical distinguishability between unitary operations. , 2001, Physical review letters.

[2]  Julia Kempe,et al.  Quantum advantage in transmitting a permutation. , 2004, Physical review letters.

[3]  A. J. Scott Optimizing quantum process tomography with unitary 2-designs , 2007, 0711.1017.

[4]  P. Perinotti,et al.  Teleportation transfers only speakable quantum information , 2010, 1008.0967.

[5]  M. Sipser,et al.  Bound on the number of functions that can be distinguished with k quantum queries , 1999 .

[6]  G. D’Ariano,et al.  Theoretical framework for quantum networks , 2009, 0904.4483.

[7]  Martin Rötteler,et al.  Quantum Algorithms to Solve the Hidden Shift Problem for Quadratics and for Functions of Large Gowers Norm , 2009, MFCS.

[8]  G Chiribella,et al.  Efficient use of quantum resources for the transmission of a reference frame. , 2004, Physical review letters.

[9]  Anthony Chefles Quantum operations, state transformations and probabilities , 2001, quant-ph/0109060.

[10]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[11]  Christoph Dankert,et al.  Exact and approximate unitary 2-designs and their application to fidelity estimation , 2009 .

[12]  Gus Gutoski,et al.  Toward a general theory of quantum games , 2006, STOC '07.

[13]  Nicolas Gisin,et al.  Quantum gloves: Quantum states that encode as much as possible chirality and nothing else , 2005 .

[14]  Runyao Duan,et al.  Entanglement is not necessary for perfect discrimination between unitary operations. , 2007, Physical review letters.

[15]  Andris Ambainis,et al.  Quantum Identification of Boolean Oracles , 2004, STACS.

[16]  G. M. D'Ariano,et al.  Optimal covariant quantum networks , 2009 .

[17]  T. Hashimoto,et al.  Extended quantum color coding (4 pages) , 2005 .

[18]  Runyao Duan,et al.  Perfect distinguishability of quantum operations. , 2009, Physical review letters.

[19]  Wim van Dam,et al.  Quantum Oracle Interrogation: Getting All Information for Almost Half the Price , 1999 .

[20]  Andris Ambainis,et al.  Improved algorithms for quantum identification of Boolean oracles , 2007, Theor. Comput. Sci..

[21]  G Chiribella,et al.  Quantum circuit architecture. , 2007, Physical review letters.

[22]  Mark Hillery,et al.  Quantum-state filtering applied to the discrimination of Boolean functions , 2005, quant-ph/0507092.

[23]  T. Rudolph,et al.  Quantum communication using a bounded-size quantum reference frame , 2008, 0812.5040.

[24]  R. Goodman,et al.  Representations and Invariants of the Classical Groups , 1998 .

[25]  G. D’Ariano,et al.  Optimal quantum learning of a unitary transformation , 2009, 0903.0543.

[26]  E. Bagan,et al.  Quantum reverse engineering and reference-frame alignment without nonlocal correlations , 2004 .

[27]  Aidan Roy,et al.  Unitary designs and codes , 2008, Des. Codes Cryptogr..

[28]  Giulio Chiribella,et al.  Covariant quantum measurements that maximize the likelihood , 2004, quant-ph/0403083.

[29]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[30]  Giulio Chiribella,et al.  Memory effects in quantum channel discrimination. , 2008, Physical review letters.

[31]  D. Gross,et al.  Evenly distributed unitaries: On the structure of unitary designs , 2006, quant-ph/0611002.

[32]  Umesh V. Vazirani,et al.  Quantum complexity theory , 1993, STOC.

[33]  Masahide Sasaki,et al.  Retrodiction of generalized measurement outcomes , 2003 .

[34]  Mingsheng Ying,et al.  Unambiguous discrimination among quantum operations , 2006 .

[35]  Wolfgang Dür,et al.  Efficient quantum communication under collective noise , 2012, Quantum Inf. Comput..

[36]  William K. Wootters,et al.  A ‘Pretty Good’ Measurement for Distinguishing Quantum States , 1994 .

[37]  Andris Ambainis,et al.  Quantum lower bounds by quantum arguments , 2000, STOC '00.

[38]  Mark Hillery,et al.  Quantum filtering and discrimination between sets of Boolean functions. , 2003, Physical review letters.

[39]  G M D'Ariano,et al.  Using entanglement improves the precision of quantum measurements. , 2001, Physical review letters.

[40]  Masahide Sasaki,et al.  Unambiguous discrimination among oracle operators , 2007, quant-ph/0702245.