Transducing reversibly with finite state machines

Abstract Finite state machines are investigated towards their ability to reversibly compute transductions, that is, to transform inputs into outputs in a reversible way. This means that the transducers are backward deterministic and hence are able to uniquely step the computation back and forth. The families of transductions computed are classified with regard to three types of length-preserving transductions as well as to the property of working reversibly. It is possible to settle all inclusion relations between these families of transductions even with injective witness transductions. Furthermore, the standard closure properties and decidability questions are investigated. It turns out that the non-closure under almost all operations can be shown, whereas all decidability questions can be answered in polynomial time. Finally, the concept of reversibility is extended to a broader view of reversibility and an infinite and dense hierarchy with respect to the grade of reversibility is obtained.

[1]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[2]  John Watrous,et al.  On the power of quantum finite state automata , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[3]  Martin Kutrib,et al.  One-way reversible multi-head finite automata , 2017, Theor. Comput. Sci..

[4]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[5]  Martin Kutrib,et al.  Degrees of Reversibility for DFA and DPDA , 2014, RC.

[6]  Eitan M. Gurari Two-way counter machines and finite-state transducers† , 1985 .

[7]  Jacques Sakarovitch,et al.  Squaring transducers: an efficient procedure for deciding functionality and sequentiality , 2000, Theor. Comput. Sci..

[8]  Eitan M. Gurari,et al.  A note on finite-valued and finitely ambiguous transducers , 1983, Mathematical systems theory.

[9]  Sheila A. Greibach,et al.  A Polynomial Time Algorithm for Deciding the Equivalence Problem for 2-Tape Deterministic Finite State Acceptors , 1982, SIAM J. Comput..

[10]  Kenichi Morita,et al.  Two-Way Reversible Multi-Head Finite Automata , 2011, Fundam. Informaticae.

[11]  Arnold L. Rosenberg,et al.  Multitape One-Way Nonwriting Automata , 1968, J. Comput. Syst. Sci..

[12]  Martin Kutrib,et al.  Minimal Reversible Deterministic Finite Automata , 2018, Int. J. Found. Comput. Sci..

[13]  Jacques Sakarovitch,et al.  Synchronized Rational Relations of Finite and Infinite Words , 1993, Theor. Comput. Sci..

[14]  Martin Kutrib,et al.  Descriptional and computational complexity of finite automata - A survey , 2011, Inf. Comput..

[15]  Nathan Lhote,et al.  On Reversible Transducers , 2017, ICALP.

[16]  Oscar H. Ibarra,et al.  On the containment and equivalence problems for two-way transducers , 2012, Theor. Comput. Sci..

[17]  Martin Kutrib,et al.  Deterministic Stack Transducers , 2016, CIAA.

[18]  Jean-Éric Pin,et al.  On Reversible Automata , 1992, LATIN.

[19]  Pierre McKenzie,et al.  Reversible Space Equals Deterministic Space , 2000, J. Comput. Syst. Sci..

[20]  Martin Kutrib,et al.  A Hierarchy of Fast Reversible Turing Machines , 2015, RC.

[21]  Martin Kutrib,et al.  One-Dimensional Cellular Automaton Transducers , 2013, Fundam. Informaticae.

[22]  Martin Kutrib,et al.  Economy of Descriptions for Basic Constructions on Rational Transductions , 2002, DCFS.

[23]  Damián López,et al.  On locally reversible languages , 2009, Theor. Comput. Sci..

[24]  Dana Angluin,et al.  Inference of Reversible Languages , 1982, JACM.

[25]  Jean Berstel,et al.  Transductions and context-free languages , 1979, Teubner Studienbücher : Informatik.

[26]  Christian Choffrut,et al.  Une Caracterisation des Fonctions Sequentielles et des Fonctions Sous-Sequentielles en tant que Relations Rationnelles , 1977, Theor. Comput. Sci..

[27]  Martin Kutrib,et al.  Reversible pushdown automata , 2012, J. Comput. Syst. Sci..

[28]  Luca Prigioniero,et al.  Weakly and Strongly Irreversible Regular Languages , 2017, AFL.

[29]  Alfred V. Aho,et al.  A general theory of translation , 1969, Mathematical systems theory.