AML1/ETO and its function as a regulator of gene transcription via epigenetic mechanisms

[1]  Christopher A. Miller,et al.  Genome Sequencing as an Alternative to Cytogenetic Analysis in Myeloid Cancers. , 2021, The New England journal of medicine.

[2]  T. Zhu,et al.  HDN-1 induces cell differentiation toward apoptosis in promyelocytic leukemia cells depending on its selective effect on client proteins of Hsp90. , 2021, Toxicology and applied pharmacology.

[3]  Salam A. Assi,et al.  RUNX1/RUNX1T1 mediates alternative splicing and reorganises the transcriptional landscape in leukemia , 2021, Nature Communications.

[4]  Li Yu,et al.  AML1-ETO inhibits acute myeloid leukemia immune escape by CD48 , 2020, Leukemia & lymphoma.

[5]  A. Ganser,et al.  NTAL is associated with treatment outcome, cell proliferation and differentiation in acute promyelocytic leukemia , 2020, Scientific Reports.

[6]  Johannes W. Bagnoli,et al.  ZBTB7A prevents RUNX1-RUNX1T1-dependent clonal expansion of human hematopoietic stem and progenitor cells , 2020, Oncogene.

[7]  C. Bloomfield,et al.  Combination of dasatinib with chemotherapy in previously untreated core binding factor acute myeloid leukemia: CALGB 10801. , 2020, Blood advances.

[8]  Ryou-u Takahashi,et al.  Targeting DNA binding proteins for cancer therapy , 2020, Cancer science.

[9]  H. Carter,et al.  The RUNX1-ETO target gene RASSF2 suppresses t(8;21) AML development and regulates Rac GTPase signaling , 2020, Blood Cancer Journal.

[10]  Z. Chen,et al.  Discovery of Highly Potent, Selective, and Orally Efficacious p300/CBP Histone Acetyltransferases Inhibitors. , 2020, Journal of medicinal chemistry.

[11]  J. Martens,et al.  The acute myeloid leukemia associated AML1-ETO fusion protein alters the transcriptome and cellular progression in a single-oncogene expressing in vitro induced pluripotent stem cell based granulocyte differentiation model , 2019, PloS one.

[12]  R. Levine,et al.  Inhibition of the mutated c-KIT kinase in AML1-ETO-positive leukemia cells restores sensitivity to PARP inhibitor. , 2019, Blood advances.

[13]  K. Döhner,et al.  Valproate and Retinoic Acid in Combination With Decitabine in Elderly Nonfit Patients With Acute Myeloid Leukemia: Results of a Multicenter, Randomized, 2 × 2, Phase II Trial. , 2019, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[14]  A. Bode,et al.  Protein lysine 43 methylation by EZH1 promotes AML1-ETO transcriptional repression in leukemia , 2019, Nature Communications.

[15]  Cameron S. Osborne,et al.  RUNX1-ETO Depletion in t(8;21) AML Leads to C/EBPα- and AP-1-Mediated Alterations in Enhancer-Promoter Interaction , 2019, Cell reports.

[16]  R. Shiekhattar,et al.  TAF1 plays a critical role in AML1-ETO driven leukemogenesis , 2019, Nature Communications.

[17]  B. Ebert,et al.  Functional characterization of BRCC3 mutations in acute myeloid leukemia with t(8;21)(q22;q22.1) , 2019, Leukemia.

[18]  Cameron S. Osborne,et al.  RUNX1-ETO Depletion in t(8;21) AML Leads to C/EBPα- and AP-1-Mediated Alterations in Enhancer-Promoter Interaction , 2019, Cell reports.

[19]  L. Bullinger,et al.  Genomic landscape and clonal evolution of acute myeloid leukemia with t(8;21): an international study on 331 patients. , 2019, Blood.

[20]  T. Haferlach,et al.  More than a fusion gene: the RUNX1-RUNX1T1 AML. , 2019, Blood.

[21]  Li-li Wang,et al.  The RUNX1–ETO fusion protein trans‐activates c‐KIT expression by recruiting histone acetyltransferase P300 on its promoter , 2019, The FEBS journal.

[22]  T. Haferlach,et al.  Molecular characterization of AML with RUNX1-RUNX1T1 at diagnosis and relapse reveals net loss of co-mutations , 2019, HemaSphere.

[23]  Salam A. Assi,et al.  The Oncogenic Transcription Factor RUNX1/ETO Corrupts Cell Cycle Regulation to Drive Leukemic Transformation , 2018, Cancer cell.

[24]  Beth Wilmot,et al.  Functional Genomic Landscape of Acute Myeloid Leukemia , 2018, Nature.

[25]  Yunpeng Zhou,et al.  A tool compound targeting the core binding factor Runt domain to disrupt binding to CBFβ in leukemic cells , 2018, Leukemia & lymphoma.

[26]  J. Martens,et al.  GFI1 is required for RUNX1/ETO positive acute myeloid leukemia , 2018, Haematologica.

[27]  R. Collins,et al.  Durable Remissions with Ivosidenib in IDH1‐Mutated Relapsed or Refractory AML , 2018, The New England journal of medicine.

[28]  R. Greil,et al.  Adding dasatinib to intensive treatment in core-binding factor acute myeloid leukemia—results of the AMLSG 11-08 trial , 2018, Leukemia.

[29]  Qingzhu Hu,et al.  AML1/ETO trans‐activates c‐KIT expression through the long range interaction between promoter and intronic enhancer , 2018, Journal of cellular biochemistry.

[30]  Hamid Bolouri,et al.  The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions , 2017, Nature Medicine.

[31]  Salam A. Assi,et al.  A FOXO1-induced oncogenic network defines the AML1-ETO preleukemic program. , 2017, Blood.

[32]  P. Vyas,et al.  Outcome of Azacitidine Therapy in Acute Myeloid Leukemia Is not Improved by Concurrent Vorinostat Therapy but Is Predicted by a Diagnostic Molecular Signature , 2017, Clinical Cancer Research.

[33]  I. Flinn,et al.  Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. , 2017, Blood.

[34]  Salam A. Assi,et al.  RUNX1-ETO and RUNX1-EVI1 Differentially Reprogram the Chromatin Landscape in t(8;21) and t(3;21) AML , 2017, Cell reports.

[35]  Eunhee Kim,et al.  ASXL2 is essential for haematopoiesis and acts as a haploinsufficient tumour suppressor in leukemia , 2017, Nature Communications.

[36]  S. Miyano,et al.  ASXL2 mutations are frequently found in pediatric AML patients with t(8;21)/ RUNX1‐RUNX1T1 and associated with a better prognosis , 2017, Genes, chromosomes & cancer.

[37]  R. Sood,et al.  Role of RUNX1 in hematological malignancies. , 2017, Blood.

[38]  L. Bullinger,et al.  Incidence and prognostic impact of ASXL2 mutations in adult acute myeloid leukemia patients with t(8;21)(q22;q22): a study of the German-Austrian AML Study Group , 2017, Leukemia.

[39]  René A. M. Dirks,et al.  The Hematopoietic Transcription Factors RUNX1 and ERG Prevent AML1-ETO Oncogene Overexpression and Onset of the Apoptosis Program in t(8;21) AMLs. , 2016, Cell reports.

[40]  Heather L. Mulder,et al.  The genomic landscape of core-binding factor acute myeloid leukemias , 2016, Nature Genetics.

[41]  Christopher M. DeBoever,et al.  Distinct splicing signatures affect converged pathways in myelodysplastic syndrome patients carrying mutations in different splicing regulators , 2016, RNA.

[42]  M. Nykter,et al.  Genome-wide repression of eRNA and target gene loci by the ETV6-RUNX1 fusion in acute leukemia , 2016, Genome research.

[43]  W. Hiddemann,et al.  MEIS2 Is an Oncogenic Partner in AML1-ETO-Positive AML. , 2016, Cell reports.

[44]  P. Pandolfi,et al.  Somatic human ZBTB7A zinc finger mutations promote cancer progression , 2016, Oncogene.

[45]  Nicola D. Roberts,et al.  Genomic Classification and Prognosis in Acute Myeloid Leukemia. , 2016, The New England journal of medicine.

[46]  W. Hiddemann,et al.  ZBTB7A mutations in acute myeloid leukaemia with t(8;21) translocation , 2016, Nature Communications.

[47]  G. Boucher,et al.  RNA-sequencing analysis of core binding factor AML identifies recurrent ZBTB7A mutations and defines RUNX1-CBFA2T3 fusion signature. , 2016, Blood.

[48]  E. Seifried,et al.  MiR144/451 Expression Is Repressed by RUNX1 During Megakaryopoiesis and Disturbed by RUNX1/ETO , 2016, PLoS genetics.

[49]  D. Saluja,et al.  Potential Therapeutic Approaches for the Treatment of Acute Myeloid Leukemia with AML1-ETO Translocation. , 2016, Current cancer drug targets.

[50]  Zhu Chen,et al.  Genome-wide studies identify a novel interplay between AML1 and AML1/ETO in t(8;21) acute myeloid leukemia. , 2016, Blood.

[51]  S. K. Zaidi,et al.  Genome-wide co-occupancy of AML1-ETO and N-CoR defines the t(8;21) AML signature in leukemic cells , 2015, BMC Genomics.

[52]  Salam A. Assi,et al.  RUNX1/ETO blocks selectin-mediated adhesion via epigenetic silencing of PSGL-1 , 2015, Oncogenesis.

[53]  N. Shen,et al.  AML1/ETO cooperates with HIF1α to promote leukemogenesis through DNMT3a transactivation , 2014, Leukemia.

[54]  J. Lausen,et al.  The truncated RUNX1/ETO activates VLA-4-dependent adhesion and migration of hematopoietic progenitor cells , 2014, Haematologica.

[55]  Salam A. Assi,et al.  Identification of a Dynamic Core Transcriptional Network in t(8;21) AML that Regulates Differentiation Block and Self-Renewal , 2014, Cell reports.

[56]  John M. Asara,et al.  ZBTB7A acts as a tumor suppressor through the transcriptional repression of glycolysis , 2014, Genes & development.

[57]  O. Abdel-Wahab,et al.  Frequent ASXL2 mutations in acute myeloid leukemia patients with t(8;21)/RUNX1-RUNX1T1 chromosomal translocations. , 2014, Blood.

[58]  J. Downing,et al.  Runx1 exon 6-related alternative splicing isoforms differentially regulate hematopoiesis in mice. , 2014, Blood.

[59]  R. Henschler,et al.  Activating c-KIT mutations confer oncogenic cooperativity and rescue RUNX1/ETO-induced DNA damage and apoptosis in human primary CD34+ hematopoietic progenitors , 2014, Leukemia.

[60]  Fei He,et al.  High expression of heat shock protein 90 alpha and its significance in human acute leukemia cells. , 2014, Gene.

[61]  J. Herman,et al.  Prolonged administration of azacitidine with or without entinostat for myelodysplastic syndrome and acute myeloid leukemia with myelodysplasia-related changes: results of the US Leukemia Intergroup trial E1905. , 2014, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[62]  Ming Yan,et al.  RUNX1–ETO induces a type I interferon response which negatively effects t(8;21)-induced increased self-renewal and leukemia development , 2014, Leukemia & lymphoma.

[63]  Michael Lübbert,et al.  The AML1/ETO target gene LAT2 interferes with differentiation of normal hematopoietic precursor cells. , 2014, Leukemia research.

[64]  V. Santini,et al.  Redistribution of H3K27me3 and acetylated histone H4 upon exposure to azacitidine and decitabine results in de-repression of the AML1/ETO target gene IL3 , 2013, Epigenetics.

[65]  A. Tanay,et al.  Addiction of t(8;21) and inv(16) acute myeloid leukemia to native RUNX1. , 2013, Cell reports.

[66]  J. Cen,et al.  Epigenetic silencing of Bcl-2, CEBPA and p14(ARF) by the AML1-ETO oncoprotein contributing to growth arrest and differentiation block in the U937 cell line. , 2013, Oncology reports.

[67]  M. Griesshammer,et al.  A novel recurrent AML1–ETO fusion: tight in vivo association with BCR–ABL1 , 2013, Leukemia.

[68]  O. Elemento,et al.  A stable transcription factor complex nucleated by oligomeric AML1-ETO controls leukaemogenesis , 2013, Nature.

[69]  W. Jin,et al.  AML1-ETO targets and suppresses cathepsin G, a serine protease, which is able to degrade AML1-ETO in t(8;21) acute myeloid leukemia , 2013, Oncogene.

[70]  L. Bullinger,et al.  Secondary genetic lesions in acute myeloid leukemia with inv(16) or t(16;16): a study of the German-Austrian AML Study Group (AMLSG). , 2013, Blood.

[71]  H. Stunnenberg,et al.  ERG and FLI1 binding sites demarcate targets for aberrant epigenetic regulation by AML1-ETO in acute myeloid leukemia. , 2012, Blood.

[72]  Fiona G. G. Nielsen,et al.  Chromatin accessibility, p300, and histone acetylation define PML-RARα and AML1-ETO binding sites in acute myeloid leukemia. , 2012, Blood.

[73]  O. Heidenreich,et al.  AML1/ETO and POU4F1 synergy drives B-lymphoid gene expression typical of t(8;21) acute myeloid leukemia , 2012, Leukemia.

[74]  Salam A. Assi,et al.  Depletion of RUNX1/ETO in t(8;21) AML cells leads to genome-wide changes in chromatin structure and transcription factor binding , 2012, Leukemia.

[75]  Guang-Biao Zhou,et al.  Bortezomib interferes with C-KIT processing and transforms the t(8;21)-generated fusion proteins into tumor-suppressing fragments in leukemia cells , 2012, Proceedings of the National Academy of Sciences.

[76]  J. Cigudosa,et al.  Chromatin modifications induced by the AML1-ETO fusion protein reversibly silence its genomic targets through AML1 and Sp1 binding motifs , 2012, Leukemia.

[77]  John R Yates,et al.  PRMT1 interacts with AML1-ETO to promote its transcriptional activation and progenitor cell proliferative potential. , 2011, Blood.

[78]  A. Melnick,et al.  The Leukemogenicity of AML1-ETO Is Dependent on Site-Specific Lysine Acetylation , 2011, Science.

[79]  M. Lübbert,et al.  The HDAC class I-specific inhibitor entinostat (MS-275) effectively relieves epigenetic silencing of the LAT2 gene mediated by AML1/ETO , 2011, Oncogene.

[80]  M. Lübbert,et al.  Regulation of the adaptor molecule LAT2, an in vivo target gene of AML1/ETO (RUNX1/RUNX1T1), during myeloid differentiation , 2011, British journal of haematology.

[81]  K. Schmiegelow,et al.  Prevalence of t(12;21)[ETV6-RUNX1]-positive cells in healthy neonates. , 2011, Blood.

[82]  M. Lübbert,et al.  Robust in vivo differentiation of t(8;21)-positive acute myeloid leukemia blasts to neutrophilic granulocytes induced by treatment with dasatinib , 2010, Leukemia.

[83]  R. Hills,et al.  OGG1 is a novel prognostic indicator in acute myeloid leukaemia , 2010, Oncogene.

[84]  P. Cahan,et al.  POU4F1 is associated with t(8;21) acute myeloid leukemia and contributes directly to its unique transcriptional signature , 2010, Leukemia.

[85]  B. Young,et al.  A novel exon in AML1-ETO negatively influences the clonogenic potential of the t(8;21) in acute myeloid leukemia , 2010, Leukemia.

[86]  J. Dering,et al.  PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro , 2009, Breast Cancer Research.

[87]  M. Mann,et al.  Lysine Acetylation Targets Protein Complexes and Co-Regulates Major Cellular Functions , 2009, Science.

[88]  Daniel G Tenen,et al.  Dysregulation of the C/EBPalpha differentiation pathway in human cancer. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[89]  E. Venturini,et al.  AML1/ETO Oncoprotein Is Directed to AML1 Binding Regions and Co-Localizes with AML1 and HEB on Its Targets , 2008, PLoS genetics.

[90]  T. Haferlach,et al.  Transcriptional upregulation of p21/WAF/Cip1 in myeloid leukemic blasts expressing AML1-ETO , 2008, Haematologica.

[91]  J. Fontana,et al.  Identification and characterization of novel AML1-ETO fusion transcripts in pediatric t(8;21) acute myeloid leukemia: a report from the Children's Oncology Group , 2008, Oncogene.

[92]  Jiandie D. Lin,et al.  TEAD mediates YAP-dependent gene induction and growth control. , 2008, Genes & development.

[93]  R. Hills,et al.  Minimal residual disease monitoring by quantitative RT-PCR in core binding factor AML allows risk stratification and predicts relapse: results of the United Kingdom MRC AML-15 trial. , 2007, Blood.

[94]  K. Mills,et al.  Transcriptional dysregulation mediated by RUNX1-RUNX1T1 in normal human progenitor cells and in acute myeloid leukaemia , 2007, Leukemia.

[95]  P. Paschka,et al.  Targeting AML1/ETO-Histone Deacetylase Repressor Complex: A Novel Mechanism for Valproic Acid-Mediated Gene Expression and Cellular Differentiation in AML1/ETO-Positive Acute Myeloid Leukemia Cells , 2007, Journal of Pharmacology and Experimental Therapeutics.

[96]  Ming Yan,et al.  The p21Waf1 pathway is involved in blocking leukemogenesis by the t(8;21) fusion protein AML1-ETO. , 2007, Blood.

[97]  I. Bozzoni,et al.  Heterochromatic gene repression of the retinoic acid pathway in acute myeloid leukemia. , 2007, Blood.

[98]  D. Gold,et al.  Novel role of HDAC inhibitors in AML1/ETO AML cells: activation of apoptosis and phagocytosis through induction of annexin A1 , 2007, Cell Death and Differentiation.

[99]  M. Fraga,et al.  The Polycomb group protein EZH2 directly controls DNA methylation , 2007, Nature.

[100]  M. Lübbert,et al.  Reversal of p15/INK4b hypermethylation in AML1/ETO-positive and -negative myeloid leukemia cell lines. , 2007, Leukemia research.

[101]  R. Claus,et al.  Inhibitors of DNA methylation and histone deacetylation independently relieve AML1/ETO‐mediated lysozyme repression , 2006, Journal of leukocyte biology.

[102]  C. Bloomfield,et al.  Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21): a Cancer and Leukemia Group B Study. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[103]  Ming Yan,et al.  A previously unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesis , 2006, Nature Medicine.

[104]  Z. Dauter,et al.  The tetramer structure of the Nervy homology two domain, NHR2, is critical for AML1/ETO's activity. , 2006, Cancer cell.

[105]  M. Fraga,et al.  The Polycomb group protein EZH2 directly controls DNA methylation , 2006, Nature.

[106]  D. Gutmann,et al.  Transcriptional Repression of the Neurofibromatosis-1 Tumor Suppressor by the t(8;21) Fusion Protein , 2005, Molecular and Cellular Biology.

[107]  Y. Kaneko,et al.  MYND‐less splice variants of AML1–MTG8 (RUNX1–CBFA2T1) are expressed in leukemia with t(8;21) , 2005, Genes, chromosomes & cancer.

[108]  Hui Zhao,et al.  AML1-ETO fusion protein up-regulates TRKA mRNA expression in human CD34+ cells, allowing nerve growth factor-induced expansion. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[109]  J. Byrd,et al.  Interplay of RUNX1/MTG8 and DNA methyltransferase 1 in acute myeloid leukemia. , 2005, Cancer research.

[110]  Ming Yan,et al.  Deletion of an AML1-ETO C-terminal NcoR/SMRT-interacting region strongly induces leukemia development. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[111]  M. Lübbert,et al.  Williams–Beuren syndrome critical region-5/non-T-cell activation linker: a novel target gene of AML1/ETO , 2004, Oncogene.

[112]  S. Pileri,et al.  PAX5 Expression in Acute Leukemias , 2004, Cancer Research.

[113]  Brian T. Chait,et al.  E Protein Silencing by the Leukemogenic AML1-ETO Fusion Protein , 2004, Science.

[114]  J. Downing,et al.  Role of RUNX1 in adult hematopoiesis: analysis of RUNX1-IRES-GFP knock-in mice reveals differential lineage expression. , 2004, Blood.

[115]  P. Shore,et al.  Transcriptional regulation of the human MIP‐1α promoter by RUNX1 and MOZ , 2003 .

[116]  P. Pandolfi,et al.  The t(8;21) fusion protein, AML1–ETO, specifically represses the transcription of the p14ARF tumor suppressor in acute myeloid leukemia , 2002, Nature Medicine.

[117]  S. Minucci,et al.  Methyltransferase Recruitment and DNA Hypermethylation of Target Promoters by an Oncogenic Transcription Factor , 2002, Science.

[118]  J. Downing,et al.  Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. , 2002, Cancer cell.

[119]  James R. Downing,et al.  ETO, a Target of t(8;21) in Acute Leukemia, Makes Distinct Contacts with Multiple Histone Deacetylases and Binds mSin3A through Its Oligomerization Domain , 2001, Molecular and Cellular Biology.

[120]  J. Licht AML1 and the AML1-ETO fusion protein in the pathogenesis of t(8;21) AML , 2001, Oncogene.

[121]  Torsten Haferlach,et al.  AML1–ETO downregulates the granulocytic differentiation factor C/EBPα in t(8;21) myeloid leukemia , 2001, Nature Medicine.

[122]  M. Grez,et al.  Multiple Regions of ETO Cooperate in Transcriptional Repression* , 2001, The Journal of Biological Chemistry.

[123]  B. Hug,et al.  Oligomerization of ETO Is Obligatory for Corepressor Interaction , 2001, Molecular and Cellular Biology.

[124]  J. Downing,et al.  Haploinsufficiency of AML1 affects the temporal and spatial generation of hematopoietic stem cells in the mouse embryo. , 2000, Immunity.

[125]  S. Nakamura,et al.  Analysis of genes under the downstream control of the t(8;21) fusion protein AML1-MTG8: overexpression of the TIS11b (ERF-1, cMG1) gene induces myeloid cell proliferation in response to G-CSF. , 2000, Blood.

[126]  N. Kamada,et al.  AML1-MTG8 leukemic protein induces the expression of granulocyte colony-stimulating factor (G-CSF) receptor through the up-regulation of CCAAT/enhancer binding protein epsilon. , 2000, Blood.

[127]  S. Minucci,et al.  Aberrant Recruitment of the Nuclear Receptor Corepressor-Histone Deacetylase Complex by the Acute Myeloid Leukemia Fusion Partner ETO , 1998, Molecular and Cellular Biology.

[128]  J. Schuetz,et al.  The MYND Motif Is Required for Repression of Basal Transcription from the Multidrug Resistance 1 Promoter by the t(8;21) Fusion Protein , 1998, Molecular and Cellular Biology.

[129]  M. Procházka,et al.  Structure and expression of the human MTG8/ETO gene. , 1998, Gene.

[130]  R Grosschedl,et al.  ALY, a context-dependent coactivator of LEF-1 and AML-1, is required for TCRalpha enhancer function. , 1997, Genes & development.

[131]  J. Zhang,et al.  The AML1/ETO fusion protein activates transcription of BCL-2. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[132]  J. Zhang,et al.  The AML1/ETO fusion protein blocks transactivation of the GM-CSF promoter by AML1B. , 1995, Oncogene.

[133]  N. Lenny,et al.  Functional domains of the t(8;21) fusion protein, AML-1/ETO. , 1995, Oncogene.

[134]  W. Hiddemann,et al.  MEIS2 Is an Oncogenic Partner in AML1-ETO-Positive AML. , 2016, Cell reports.

[135]  C. Férec,et al.  RUNX1 translocations and fusion genes in malignant hemopathies. , 2011, Future oncology.

[136]  D. Tenen,et al.  The myeloid master regulator transcription factor PU.1 is inactivated by AML1-ETO in t(8;21) myeloid leukemia. , 2003, Blood.

[137]  P. Shore,et al.  Transcriptional regulation of the human MIP-1alpha promoter by RUNX1 and MOZ. , 2003, Nucleic acids research.

[138]  H. Kantarjian,et al.  Acute myeloid leukemia , 2018, Methods in Molecular Biology.

[139]  J. Herman,et al.  Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer , 1999, Nature Genetics.

[140]  J. Rowley Identificaton of a translocation with quinacrine fluorescence in a patient with acute leukemia. , 1973, Annales de genetique.