Leaderless genes in bacteria: clue to the evolution of translation initiation mechanisms in prokaryotes

[1]  T. Gojobori,et al.  Dynamic evolution of translation initiation mechanisms in prokaryotes , 2010, Proceedings of the National Academy of Sciences.

[2]  P. Londei,et al.  Begin at the beginning: evolution of translational initiation. , 2009, Research in microbiology.

[3]  B. Suess,et al.  A novel mechanism for translation initiation operates in haloarchaea , 2009, Molecular microbiology.

[4]  I. Moll,et al.  An unexpected type of ribosomes induced by kasugamycin: a look into ancestral times of protein synthesis? , 2009, Molecular cell.

[5]  Huaiqiu Zhu,et al.  Prediction of translation initiation site for microbial genomes with TriTISA , 2009, Bioinform..

[6]  Joel Dudley,et al.  MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences , 2008, Briefings Bioinform..

[7]  Minghui Jiang,et al.  uShuffle: A useful tool for shuffling biological sequences while preserving the k-let counts , 2008, BMC Bioinformatics.

[8]  Philippe Ortet,et al.  ProTISA: a comprehensive resource for translation initiation site annotation in prokaryotic genomes , 2007, Nucleic Acids Res..

[9]  Huaiqiu Zhu,et al.  Computational evaluation of TIS annotation for prokaryotic genomes , 2008, BMC Bioinformatics.

[10]  C. Lange,et al.  Experimental Characterization of Cis-Acting Elements Important for Translation and Transcription in Halophilic Archaea , 2007, PLoS genetics.

[11]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[12]  A. Tauch,et al.  Genomics of Actinobacteria: Tracing the Evolutionary History of an Ancient Phylum , 2007, Microbiology and Molecular Biology Reviews.

[13]  Steven Salzberg,et al.  Identifying bacterial genes and endosymbiont DNA with Glimmer , 2007, Bioinform..

[14]  T. D. Schneider,et al.  Anatomy of Escherichia coli σ70 promoters , 2006, Nucleic acids research.

[15]  Ying Xu,et al.  Operon prediction using both genome-specific and general genomic information , 2006, Nucleic acids research.

[16]  Tatiana Tatusova,et al.  NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins , 2004, Nucleic Acids Res..

[17]  Jin Wang,et al.  MED: a new non-supervised gene prediction algorithm for bacterial and archaeal genomes , 2007, BMC Bioinformatics.

[18]  J. Kormanec,et al.  Cascade of sigma factors in streptomycetes: identification of a new extracytoplasmic function sigma factor σJ that is under the control of the stress-response sigma factor σH in Streptomyces coelicolor A3(2) , 2006, Archives of Microbiology.

[19]  M. Buttner,et al.  DevA, a GntR-Like Transcriptional Regulator Required for Development in Streptomyces coelicolor , 2006, Journal of bacteriology.

[20]  Saman Halgamuge,et al.  Analysis of SD sequences in completed microbial genomes: non-SD-led genes are as common as SD-led genes. , 2006, Gene.

[21]  I. Terenin,et al.  A Leaderless mRNA Can Bind to Mammalian 80S Ribosomes and Direct Polypeptide Synthesis in the Absence of Translation Initiation Factors , 2006, Molecular and Cellular Biology.

[22]  B. Snel,et al.  Toward Automatic Reconstruction of a Highly Resolved Tree of Life , 2006, Science.

[23]  M. Kozak,et al.  Regulation of translation via mRNA structure in prokaryotes and eukaryotes. , 2005, Gene.

[24]  J. Martín,et al.  Binding of PhoP to promoters of phosphate‐regulated genes in Streptomyces coelicolor: identification of PHO boxes , 2005, Molecular microbiology.

[25]  P. Londei Evolution of translational initiation: new insights from the archaea. , 2005, FEMS microbiology reviews.

[26]  Katherine H. Huang,et al.  A novel method for accurate operon predictions in all sequenced prokaryotes , 2005, Nucleic acids research.

[27]  R. Garrett,et al.  Divergent transcriptional and translational signals in Archaea. , 2005, Environmental microbiology.

[28]  Jin Wang,et al.  Accuracy improvement for identifying translation initiation sites in microbial genomes , 2004, Bioinform..

[29]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[30]  Rainer Merkl,et al.  The genome sequence of the extreme thermophile Thermus thermophilus , 2004, Nature Biotechnology.

[31]  G. Wright,et al.  Characterization of an inducible vancomycin resistance system in Streptomyces coelicolor reveals a novel gene (vanK) required for drug resistance , 2004, Molecular microbiology.

[32]  Y. Shimizu,et al.  Evidence for the Translation Initiation of Leaderless mRNAs by the Intact 70 S Ribosome without Its Dissociation into Subunits in Eubacteria* , 2004, Journal of Biological Chemistry.

[33]  Darren A. Natale,et al.  The COG database: an updated version includes eukaryotes , 2003, BMC Bioinformatics.

[34]  H. Nothaft,et al.  In Vivo Analysis of HPr Reveals a Fructose-Specific Phosphotransferase System That Confers High-Affinity Uptake in Streptomyces coelicolor , 2003, Journal of bacteriology.

[35]  J. Helmann,et al.  The σ70family of sigma factors , 2003, Genome Biology.

[36]  S. Karlin,et al.  Correlations between Shine-Dalgarno Sequences and Gene Features Such as Predicted Expression Levels and Operon Structures , 2002, Journal of bacteriology.

[37]  C. Gualerzi,et al.  Leaderless mRNAs in bacteria: surprises in ribosomal recruitment and translational control , 2002, Molecular microbiology.

[38]  S. Horinouchi,et al.  Autophosphorylation of a Bacterial Serine/Threonine Kinase, AfsK, Is Inhibited by KbpA, an AfsK-Binding Protein , 2001, Journal of bacteriology.

[39]  M. Borodovsky,et al.  GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. , 2001, Nucleic acids research.

[40]  D. Hopwood,et al.  β-Ketoacyl Acyl Carrier Protein Synthase III (FabH) Is Essential for Fatty Acid Biosynthesis in Streptomyces coelicolor A3(2) , 2001 .

[41]  M. Borodovsky,et al.  Leaderless transcripts of the crenarchaeal hyperthermophile Pyrobaculum aerophilum. , 2001, Journal of molecular biology.

[42]  S. Ehrlich,et al.  The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. , 2001, Genome research.

[43]  P. Brian,et al.  Genetic and transcriptional analysis of absA, an antibiotic gene cluster‐linked two‐component system that regulates multiple antibiotics in Streptomyces coelicolor , 2001, Molecular microbiology.

[44]  Hanah Margalit,et al.  PromEC: An updated database of Escherichia coli mRNA promoters with experimentally identified transcriptional start sites , 2001, Nucleic Acids Res..

[45]  M. Bibb,et al.  Beta-ketoacyl acyl carrier protein synthase III (FabH) is essential for fatty acid biosynthesis in Streptomyces coelicolor A3(2). , 2001, Journal of bacteriology.

[46]  C. Gualerzi,et al.  Selective stimulation of translation of leaderless mRNA by initiation factor 2: evolutionary implications for translation , 2000, The EMBO journal.

[47]  J. Hahn,et al.  Regulation of the furA and catC Operon, Encoding a Ferric Uptake Regulator Homologue and Catalase-Peroxidase, Respectively, in Streptomyces coelicolor A3(2) , 2000, Journal of bacteriology.

[48]  C. Sensen,et al.  Two different and highly organized mechanisms of translation initiation in the archaeon Sulfolobus solfataricus , 2000, Extremophiles.

[49]  K. Chater,et al.  A developmentally regulated gene encoding a repressor‐like protein is essential for sporulation in Streptomyces coelicolor A3(2) , 1998, Molecular microbiology.

[50]  M. Bibb,et al.  Substrate induction and glucose repression of maltose utilization by Streptomyces coelicolor A3(2) is controlled by malR, a member of the lacI–galR family of regulatory genes , 1997, Molecular microbiology.

[51]  G. Janssen,et al.  Translation of vph mRNA in Streptomyces lividans and Escherichia coli after removal of the 5′ untranslated leader , 1996, Molecular microbiology.

[52]  O. Ohara,et al.  Sequence features surrounding the translation initiation sites assigned on the genome sequence of Synechocystis sp. strain PCC6803 by amino-terminal protein sequencing. , 1996, DNA research : an international journal for rapid publication of reports on genes and genomes.

[53]  M Bjerknes,et al.  Determination of the optimal aligned spacing between the Shine-Dalgarno sequence and the translation initiation codon of Escherichia coli mRNAs. , 1994, Nucleic acids research.

[54]  J. Lake,et al.  Reconstructing evolutionary trees from DNA and protein sequences: paralinear distances. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[55]  M. Gottesman,et al.  Resistance of lambda cI translation to antibiotics that inhibit translation initiation , 1993, Journal of bacteriology.

[56]  R. H. Baltz,et al.  Industrial Microorganisms: Basic and Applied Molecular Genetics , 1993 .

[57]  M Ptashne,et al.  Autoregulation and function of a repressor in bacteriophage lambda. , 1976, Science.

[58]  J. Shine,et al.  The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[59]  B. Moseley,et al.  Repair of Irradiated Transforming Deoxyribonucleic Acid in Wild Type and a Radiation-Sensitive Mutant of Micrococcus radiodurans , 1971, Journal of bacteriology.