Morphological Stability of the Solid–Liquid Interface during Melt Crystallization of Ca1–xSrxF2 Solid Solution

[1]  P. Heitjans,et al.  Is Geometric Frustration-Induced Disorder a Recipe for High Ionic Conductivity? , 2017, Journal of the American Chemical Society.

[2]  P. Heitjans,et al.  Mechanochemical synthesis, structure, and properties of solid solutions of alkaline earth metal fluorides: M a 1-x M b x F 2 (M: Ca, Sr, Ba) , 2016 .

[3]  P. Fedorov,et al.  Morphological stability of the solid‒liquid interface during melt crystallization of Pb1–xCdxF2 solid solution , 2016 .

[4]  P. Fedorov,et al.  Stability of the solid–liquid interface under constitutional undercooling in the crystal growth of TlCl–TlBr and TlBr–TlI solid solutions , 2015, Inorganic Materials.

[5]  P. Fedorov,et al.  Thermophysical characteristics of Ca1−xSrxF2 solid-solution Crystals (0 ≤ x ≤ 1) , 2015 .

[6]  N. Sorokin,et al.  Thermophysical characteristics of Pb0.679Cd0.321F2 solid-solution crystals , 2015 .

[7]  P. Fedorov,et al.  Spatial inhomogeneity in crystalline materials and saddle-type congruent melting points in ternary systems , 2012 .

[8]  R. P. Ermakov,et al.  Coprecipitation from aqueous solutions to prepare binary fluorides , 2011 .

[9]  K. Temelkov,et al.  The growth of mixed alkaline-earth fluorides for laser host applications , 2011 .

[10]  P. Fedorov Third law of thermodynamics as applied to phase diagrams , 2010 .

[11]  V. Osiko,et al.  Crystal Growth of Fluorides , 2010 .

[12]  N. Sorokin,et al.  Growth of congruently melting Ca0.59Sr0.41F2 crystals and study of their properties , 2010 .

[13]  P. Fedorov,et al.  Heat capacity and thermodynamic functions of cadmium fluoride , 2009 .

[14]  S. Kuznetsov,et al.  Morphological stability of solid-liquid interface during melt crystallization of M1−xRxF2+x solid solutions , 2008 .

[15]  P. Fedorov,et al.  Comment on “The eutectic composition on CdxPb1 - xF2 phase diagram: A molecular-dynamics study” by Picinin A., Silva M. A. P., Rino J. P., and Hai G. Q. , 2008 .

[16]  R. Uecker,et al.  Phase diagram analysis and crystal growth of solid solutions Ca1-xSrxF2 , 2007, 0708.4323.

[17]  Maxim E. Doroshenko,et al.  Efficient lasing in diode-pumped Yb3+:CaF2–SrF2 solid-solution single crystals , 2007 .

[18]  P. A. Popov,et al.  Thermal conductivity of CaF2 optical ceramic , 2007 .

[19]  Peter Capper,et al.  Bulk Crystal Growth of Electronic, Optical and Optoelectronic Materials (Wiley Series in Materials for Electronic & Optoelectronic Applications) , 2005 .

[20]  P. Fedorov,et al.  Lead difluoride and related systems , 2004 .

[21]  P. Fedorov,et al.  A new optical medium—Cd0.75Sr0.25F2 single crystals , 2004 .

[22]  Z. Levine,et al.  Intrinsic birefringence in calcium fluoride and barium fluoride , 2001 .

[23]  E. Watson,et al.  Sr, Y, and REE diffusion in fluorite , 2001 .

[24]  P. Fedorov Morphological Stability of the Solidification Front near Minima and Maxima in the Liquidus Line in Binary Solid-Solution Systems , 2001 .

[25]  V. Trnovcová,et al.  Fast ionic conductivity of PbF2:MF2 (M = Mg, Ba, Cd) and PbF2:ScF3 single crystals and composites , 1999 .

[26]  V. I. Kirillovich STATE OF THE ESTER PLASTICISERS SECTOR IN RUSSIA FOR THE PERIOD 1990-2000 , 1998 .

[27]  P. Fedorov,et al.  LIQUIDUS AND SOLIDUS OF FLUORITE SOLID SOLUTIONS IN THE CAF2-SRF2-LAF3 SYSTEM , 1998 .

[28]  P. Fedorov,et al.  PHASE DIAGRAM OF THE CAF2-SRF2-NDF3 SYSTEM , 1998 .

[29]  P. Fedorov,et al.  Superionic materials based on lead fluoride , 1997 .

[30]  I. Kosacki Physical properties and applications of Cd1−xPbxF2 superionic crystals , 1989 .

[31]  R. Pastor,et al.  Solid solutions of metal halides under a reactive atmosphere , 1976 .

[32]  W. White,et al.  Phase Equilibria in the Systems CdF2‐CaF2, CdF2‐PbF2, and CdF2‐ZnF2 , 1971 .

[33]  P. Pershan,et al.  Phonon Optical Properties of Ca 1-x Sr x F 2 , 1970 .

[34]  B. Chalmers Principles of Solidification , 1964 .

[35]  B. F. Naylor Heat Contents at High Temperatures of Magnesium and Calcium Fluorides1 , 1945 .