Ideology algorithm: a socio-inspired optimization methodology

This paper introduces a new socio-inspired metaheuristic technique referred to as ideology algorithm (IA). It is inspired by the self-interested and competitive behaviour of political party individuals which makes them improve their ranking. IA demonstrated superior performance as compared to other well-known techniques in solving unconstrained test problems. Wilcoxon signed-rank test is applied to verify the performance of IA in solving optimization problems. The results are compared with seven well-known and some recently proposed optimization algorithms (PSO, CLPSO, CMAES, ABC, JDE, SADE and BSA). A total of 75 unconstrained benchmark problems are used to test the performance of IA up to 30 dimensions. The results from this study highlighted that the IA outperforms the other algorithms in terms of number function evaluations and computational time. The eminent observed features of the algorithm are also discussed.

[1]  M. R. Mohan,et al.  MODIFIED ARTIFICIAL BEE COLONY ALGORITHM FOR SOLVING ECONOMIC DISPATCH PROBLEM , 2012 .

[2]  O. Hasançebi,et al.  Upper bound strategy for metaheuristic based design optimization of steel frames , 2013, Adv. Eng. Softw..

[3]  Gilbert Laporte,et al.  Solving a multi-objective dynamic stochastic districting and routing problem with a co-evolutionary algorithm , 2016, Comput. Oper. Res..

[4]  Ali A. Minai,et al.  Inferring causal networks using fuzzy cognitive maps and evolutionary algorithms with application to gene regulatory network reconstruction , 2015, Appl. Soft Comput..

[5]  Ali R. Yildiz,et al.  Hybrid Taguchi-differential evolution algorithm for optimization of multi-pass turning operations , 2013, Appl. Soft Comput..

[6]  V. Selvi,et al.  Comparative Analysis of Ant Colony and Particle Swarm Optimization Techniques , 2010 .

[7]  Stefan Roth,et al.  Covariance Matrix Adaptation for Multi-objective Optimization , 2007, Evolutionary Computation.

[8]  A. Rezaee Jordehi,et al.  An efficient chaotic water cycle algorithm for optimization tasks , 2015, Neural Computing and Applications.

[9]  P. N. Suganthan,et al.  Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[10]  Mohamed El Bachir Menai,et al.  Word sense disambiguation using evolutionary algorithms - Application to Arabic language , 2014, Comput. Hum. Behav..

[11]  Xin-She Yang,et al.  Cuckoo Search via Lévy flights , 2009, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).

[12]  Yan Zhang,et al.  Fuzzy performance evaluation of Evolutionary Algorithms based on extreme learning classifier , 2016, Neurocomputing.

[13]  Marcos André Gonçalves,et al.  A Genetic Programming Approach to Record Deduplication , 2012, IEEE Transactions on Knowledge and Data Engineering.

[14]  Farhad Samadzadegan,et al.  Time-dependent personal tour planning and scheduling in metropolises , 2011, Expert Syst. Appl..

[15]  Alexander Egyed,et al.  Applying multiobjective evolutionary algorithms to dynamic software product lines for reconfiguring mobile applications , 2015, J. Syst. Softw..

[16]  M.H. Moradi,et al.  A combination of Genetic Algorithm and Particle Swarm Optimization for optimal DG location and sizing in distribution systems , 2010, 2010 Conference Proceedings IPEC.

[17]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[18]  Ville Tirronen,et al.  Recent advances in differential evolution: a survey and experimental analysis , 2010, Artificial Intelligence Review.

[19]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[20]  Joaquín Bautista,et al.  A multiobjective model and evolutionary algorithms for robust time and space assembly line balancing under uncertain demand , 2016 .

[21]  Gerson Lima,et al.  Exterior lighting computer-automated design based on multi-criteria parallel evolutionary algorithm: optimized designs for illumination quality and energy efficiency , 2016, Expert Syst. Appl..

[22]  Saeid Kazemzadeh Azad,et al.  Adaptive dimensional search: A new metaheuristic algorithm for discrete truss sizing optimization , 2015 .

[23]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[24]  Rakesh Kumar,et al.  Blending Roulette Wheel Selection & Rank Selection in Genetic Algorithms , 2012 .

[25]  Anand J. Kulkarni,et al.  Application of the cohort-intelligence optimization method to three selected combinatorial optimization problems , 2016, Eur. J. Oper. Res..

[26]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[27]  Manuel Rosa-Zurera,et al.  An evolutionary algorithm to optimize the microphone array configuration for speech acquisition in vehicles , 2014, Eng. Appl. Artif. Intell..

[28]  Seyed Mohammad Mirjalili,et al.  The Ant Lion Optimizer , 2015, Adv. Eng. Softw..

[29]  Anand Jayant Kulkarni,et al.  Constraint handling in Firefly Algorithm , 2013, 2013 IEEE International Conference on Cybernetics (CYBCO).

[30]  A. Rezaee Jordehi,et al.  Chaotic bat swarm optimisation (CBSO) , 2015, Appl. Soft Comput..

[31]  Jan Stępień,et al.  Application of the evolutionary algorithm with memory at the population level for restoration service of electric power distribution networks , 2014 .

[32]  Siti Mariyam Shamsuddin,et al.  Particle Swarm Optimization: Technique, System and Challenges , 2011 .

[33]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[34]  Xiaodong Li,et al.  Cooperatively Coevolving Particle Swarms for Large Scale Optimization , 2012, IEEE Transactions on Evolutionary Computation.

[35]  Andrew Lewis,et al.  Grey Wolf Optimizer , 2014, Adv. Eng. Softw..

[36]  Dervis Karaboga,et al.  A comparative study of Artificial Bee Colony algorithm , 2009, Appl. Math. Comput..

[37]  Bin Li,et al.  A hybrid evolutionary algorithm for multiobjective variation tolerant logic mapping on nanoscale crossbar architectures , 2016, Appl. Soft Comput..

[38]  Shigeru Nakayama,et al.  User-system cooperative evolutionary computation for both quantitative and qualitative objective optimization in image processing filter design , 2014, Appl. Soft Comput..

[39]  Francisco Herrera,et al.  A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms , 2011, Swarm Evol. Comput..

[40]  Arthur C. Sanderson,et al.  JADE: Adaptive Differential Evolution With Optional External Archive , 2009, IEEE Transactions on Evolutionary Computation.

[41]  Manuel López-Ibáñez,et al.  Ant colony optimization , 2010, GECCO '10.

[42]  Anand Jayant Kulkarni,et al.  Solving 0–1 Knapsack Problem using Cohort Intelligence Algorithm , 2016, Int. J. Mach. Learn. Cybern..

[43]  Barbara Webb,et al.  Swarm Intelligence: From Natural to Artificial Systems , 2002, Connect. Sci..

[44]  Pinar Çivicioglu,et al.  Backtracking Search Optimization Algorithm for numerical optimization problems , 2013, Appl. Math. Comput..

[45]  A. Kai Qin,et al.  Self-adaptive differential evolution algorithm for numerical optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.

[46]  B. Walczak,et al.  Particle swarm optimization (PSO). A tutorial , 2015 .

[47]  O. Hasançebi,et al.  An elitist self-adaptive step-size search for structural design optimization , 2014, Appl. Soft Comput..

[48]  M. E. Captivo,et al.  Bicriteria elective surgery scheduling using an evolutionary algorithm , 2015 .

[49]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[50]  Ali R. Yildiz,et al.  Comparison of evolutionary-based optimization algorithms for structural design optimization , 2013, Eng. Appl. Artif. Intell..

[51]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[52]  Carlos A. Coello Coello,et al.  Use of a self-adaptive penalty approach for engineering optimization problems , 2000 .

[53]  Mehmet Fatih Tasgetiren,et al.  An ensemble of discrete differential evolution algorithms for solving the generalized traveling salesman problem , 2010, Appl. Math. Comput..

[54]  Rahim Ali Abbaspour,et al.  Using combined AHP–genetic algorithm in artificial groundwater recharge site selection of Gareh Bygone Plain, Iran , 2014, Environmental Earth Sciences.

[55]  Christian Blum,et al.  Swarm Intelligence: Introduction and Applications , 2008, Swarm Intelligence.