Hybrid stress analysis

The synergism obtained by combining experimental information with numerical and/or theoretical concepts to stress analyze components made of isotropic and orthotropic (composite) materials is illustrated. Although applicable to a variety of experimental techniques, the paper emphasizes the use of measured moire, holographic, laser Doppler interferometric and thermoelastic data. Least-squares, collocation, complex stress functions, analytic continuation, conformal mapping, splines and FEM methods are employed.

[1]  R. Rowlands,et al.  Determination of individual stresses thermoelastically , 1990 .

[2]  R. Rowlands,et al.  Differentiation along arbitrary orientations , 1978 .

[3]  R. Rowlands,et al.  Filtering thermoelastically measured isopachic data , 1997 .

[4]  Robert E. Rowlands,et al.  Continuous full-field representation and differentiation of three-dimensional experimental vector data , 1987 .

[5]  D. G. Berghaus,et al.  Obtaining derivatives from experimental data using smoothed-spline functions , 1973 .

[6]  T. D. Gerhardt,et al.  A Hybrid/Finite Element Approach for Stress Analysis of Notched Anisotropic Materials , 1984 .

[7]  J. Balaš Some applications of experimental analysis of models and structures , 1967 .

[8]  Albert S. Kobayashi,et al.  Handbook on experimental mechanics , 1987 .

[9]  Robert E. Rowlands,et al.  Fracture process zone analysis of concrete using moiré interferometry , 1997 .

[10]  W. F. Swinson,et al.  Hybrid stress analysis of vibrating plates using holographic interferometry and finite elements , 1987 .

[11]  R. Rowlands,et al.  Hybrid stress analysis of flexed isotropic and composite plates , 1992 .

[12]  R. Rowlands,et al.  Thermoelastic stress analysis of orthotropic composites , 1995 .

[13]  Robert E. Rowlands,et al.  Hybrid moiré-numerical stress analysis around cutouts in loaded composites , 1996 .

[14]  N. Muskhelishvili Some basic problems of the mathematical theory of elasticity , 1953 .

[15]  Robert E. Rowlands,et al.  Smoothing finite-element and experimental hybrid technique for stress analyzing composites , 1991 .

[16]  R. Rowlands,et al.  Hybrid elastostatic and thermostatic analysis from measured data , 1989 .

[17]  R. J. Sanford,et al.  Stress intensity determination by an experimental-numerical hybrid technique , 1991 .

[18]  B. Sandor,et al.  Thermoelastic determination of individual stress components in loaded composites , 1992 .

[19]  I. Daniel,et al.  Stress Analysis of Anisotropic Laminated Plates , 1974 .

[20]  D. Olson A photomechanics system for nondestructive three-dimensional stress analysis , 1970 .

[21]  Hugh Alan Bruck,et al.  Full-field representation of discretely sampled surface deformation for displacement and strain analysis , 1991 .

[22]  R. Rowlands,et al.  Simultaneous stress separation, smoothing of measured thermoelastic isopachic information and enhanced boundary data , 1990 .

[23]  R. Rowlands,et al.  Quantitative stress analysis based on the measured trace of the stress tensor , 1991 .

[24]  R. Rowlands,et al.  Full-field numerical differentiation , 1978 .

[25]  R. J. Sanford,et al.  Determining stress intensity factors from smoothing finite-element representation of photomechanical data , 1991 .

[26]  Y. M. Huang,et al.  Thermal Analysis Using A Hybrid Experimental-Numerical Technique , 1988, Defense, Security, and Sensing.

[27]  H. R. Busby,et al.  Spline function smoothing and differentiation of noisy data on a rectangular grid , 1990 .

[28]  Robert E. Rowlands,et al.  Exact interpretation of moiré fringe patterns in digital images , 1988 .

[29]  A. Tessler,et al.  Least-Squares Penalty-Constraint Finite Element Method For Generating Strain Fields From Moire Fringe Patterns , 1987, Optics & Photonics.

[30]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[31]  J. Suhling,et al.  Determining the three individual stress components from measured isochromatic fringes , 1991 .

[32]  Robert E. Rowlands,et al.  Smooth spline-like finite-element differentiation of full-field experimental data over arbitrary geometry , 1979 .

[33]  Robert E. Rowlands,et al.  Thermoelastic determination of stress intensity factors in orthotropic composites using the J-integral , 1997 .

[34]  R. Rowlands,et al.  Determining reliable edge isopachic data from interior thermoelastic measurements , 1995 .

[35]  C. E. Freese,et al.  Central crack in plane orthotropic rectangular sheet , 1972 .

[36]  H. T. Jessop,et al.  A Treatise on Photoelasticity , 1958 .

[37]  J. Whitney,et al.  Approximate Stresses in an Orthotropic Plate Containing a Circular Hole , 1975 .