Stabilization Results of a Piezoelectric Beams with Partial Viscous Dampings and Under Lorenz Gauge Condition

[1]  Mohammad Akil Stability of piezoelectric beam with magnetic effect under (Coleman or Pipkin)–Gurtin thermal law , 2022, Zeitschrift für angewandte Mathematik und Physik.

[2]  Wenjun Liu,et al.  Stability of piezoelectric beams with magnetic effects of fractional derivative type and with/without thermal effects , 2021, 2109.09739.

[3]  M. L. Santos,et al.  Energy decay for a weakly nonlinear damped piezoelectric beams with magnetic effects and a nonlinear delay term , 2021, Zeitschrift für angewandte Mathematik und Physik.

[4]  A. Özer Stabilization Results for Well-Posed Potential Formulations of a Current-Controlled Piezoelectric Beam and Their Approximations , 2020 .

[5]  M. M. Freitas,et al.  Equivalence between exponential stabilization and boundary observability for piezoelectric beams with magnetic effect , 2019, Zeitschrift für angewandte Mathematik und Physik.

[6]  H. Tzou Piezoelectric Shells , 2018, Solid Mechanics and Its Applications.

[7]  D. Tataru,et al.  Local Well-Posedness of the (4 + 1)-Dimensional Maxwell–Klein–Gordon Equation at Energy Regularity , 2015, 1503.01560.

[8]  Kirsten Morris,et al.  Modeling and Stabilizability of Voltage-Actuated Piezoelectric Beams with Magnetic Effects , 2013, SIAM J. Control. Optim..

[9]  Kirsten Morris,et al.  Strong stabilization of piezoelectric beams with magnetic effects , 2013, 52nd IEEE Conference on Decision and Control.

[10]  Achenef Tesfahun,et al.  Finite-Energy Global Well-Posedness of the Maxwell–Klein–Gordon System in Lorenz Gauge , 2010, 1001.5373.

[11]  Irena Lasiecka,et al.  Exact controllability of a 3D piezoelectric body , 2009 .

[12]  Bernadette Miara,et al.  Boundary Observation and Exact Control of a Quasi-electrostatic Piezoelectric System in Multilayered Media , 2007, SIAM J. Control. Optim..

[13]  Louis Roder Tcheugoué Tébou,et al.  Uniform boundary stabilization of the finite difference space discretization of the 1−d wave equation , 2007, Adv. Comput. Math..

[14]  Jiashi Yang,et al.  An Introduction to the Theory of Piezoelectricity , 2004 .

[15]  Scott W. Hansen,et al.  Analysis of a plate with a localized piezoelectric patch , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[16]  N. Rogacheva The Theory of Piezoelectric Shells and Plates , 1994 .

[17]  J. Lions Exact controllability, stabilization and perturbations for distributed systems , 1988 .

[18]  Wolfgang Arendt,et al.  Tauberian theorems and stability of one-parameter semigroups , 1988 .

[19]  A. Soufyane,et al.  Piezoelectric beams with magnetic effect and localized damping , 2021, Mathematical Control & Related Fields.

[20]  K. Morris,et al.  Modeling and stabilization of current-controlled piezo-electric beams with dynamic electromagnetic field , 2020 .

[21]  Ahmet Özkan Özer,et al.  Potential Formulation for Charge or Current-Controlled Piezoelectric Smart Composites and Stabilization Results: Electrostatic Versus Quasi-Static Versus Fully-Dynamic Approaches , 2019, IEEE Transactions on Automatic Control.

[22]  A. Ramos,et al.  Exponential stability and numerical treatment for piezoelectric beams with magnetic effect , 2018 .

[23]  Ralph C. Smith Smart Material Systems , 2005 .

[24]  Harvey Thomas Banks,et al.  Smart material structures: Modeling, estimation, and control , 1996 .

[25]  I. Legrain,et al.  Theoretical, numerical and experimental discussion on the use of piezoelectric devices for control-structure interaction , 1992 .

[26]  H. Tiersten Linear Piezoelectric Plate Vibrations: Elements of the Linear Theory of Piezoelectricity and the Vibrations Piezoelectric Plates , 1969 .