Partitioning Networks by Eigenvectors
暂无分享,去创建一个
[1] G. Kirchhoff. Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird , 1847 .
[2] M. Fisher. On hearing the shape of a drum , 1966 .
[3] P. Gould. THE GEOGRAPHICAL INTERPRETATION OF EIGENVALUES , 1967 .
[4] Kenneth M. Hall. An r-Dimensional Quadratic Placement Algorithm , 1970 .
[5] Brian W. Kernighan,et al. An efficient heuristic procedure for partitioning graphs , 1970, Bell Syst. Tech. J..
[6] K. Tinkler,et al. The physical interpretation of eigenfunctions of dichotomous matrices , 1972 .
[7] P. Arabie,et al. An algorithm for clustering relational data with applications to social network analysis and comparison with multidimensional scaling , 1975 .
[8] M. Fiedler. A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory , 1975 .
[9] B. Parlett,et al. The Lanczos algorithm with selective orthogonalization , 1979 .
[10] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[11] 西里 静彦,et al. Analysis of categorical data : dual scaling and its applications , 1980 .
[12] Friedrich W. Biegler-König. Sufficient conditions for the solubility of inverse eigenvalue problems , 1981 .
[13] G. M. Southward,et al. Analysis of Categorical Data: Dual Scaling and Its Applications , 1981 .
[14] E. Barnes. An algorithm for partitioning the nodes of a graph , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.
[15] B. Parlett,et al. On estimating the largest eigenvalue with the Lanczos algorithm , 1982 .
[16] J. Gilbert,et al. Graph Coloring Using Eigenvalue Decomposition , 1983 .
[17] C. D. Gelatt,et al. Optimization by Simulated Annealing , 1983, Science.
[18] J. Dodziuk. Difference equations, isoperimetric inequality and transience of certain random walks , 1984 .
[19] N. Alon,et al. il , , lsoperimetric Inequalities for Graphs , and Superconcentrators , 1985 .
[20] T. D. Morley,et al. Eigenvalues of the Laplacian of a graph , 1985 .
[21] Noga Alon,et al. lambda1, Isoperimetric inequalities for graphs, and superconcentrators , 1985, J. Comb. Theory, Ser. B.
[22] N. Alon. Eigenvalues and expanders , 1986, Comb..
[23] F. Bien. Constructions of telephone networks by group representations , 1989 .
[24] V. Sunder,et al. The Laplacian spectrum of a graph , 1990 .
[25] B. Mohar. THE LAPLACIAN SPECTRUM OF GRAPHS y , 1991 .
[26] Horst D. Simon,et al. Partitioning of unstructured problems for parallel processing , 1991 .
[27] Andrew B. Kahng,et al. New spectral methods for ratio cut partitioning and clustering , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..
[28] Martin G. Everett,et al. Graph colorings and power in experimental exchange networks , 1992 .
[29] J. Friedman. Some geometric aspects of graphs and their eigenfunctions , 1993 .
[30] Horst D. Simon,et al. Fast multilevel implementation of recursive spectral bisection for partitioning unstructured problems , 1994, Concurr. Pract. Exp..
[31] Russell Merris,et al. The Laplacian Spectrum of a Graph II , 1994, SIAM J. Discret. Math..
[32] Kazuo Yamaguchi,et al. The flow of information through social networks: diagonal-free measures of inefficiency and the structural determinants of inefficiency , 1994 .
[33] Martin Berzins,et al. Dynamic load-balancing for PDE solvers on adaptive unstructured meshes , 1995, Concurr. Pract. Exp..
[34] Moody T. Chu,et al. Inverse Eigenvalue Problems , 1998, SIAM Rev..
[35] William Richards. Convergence Analysis of Communication Networks , 1998 .
[36] Gordon F. Royle,et al. Algebraic Graph Theory , 2001, Graduate texts in mathematics.
[37] Michael William Newman,et al. The Laplacian spectrum of graphs , 2001 .