State-of-the-art of portable (bio)sensors based on smartphone, lateral flow and microfluidics systems in protozoan parasites monitoring: A review

[1]  U. Ryan,et al.  Point of care diagnostics for Cryptosporidium: new and emerging technologies , 2022, Current opinion in gastroenterology.

[2]  Zheng Li,et al.  Microarray-based chemical sensors and biosensors: Fundamentals and food safety applications , 2022, TrAC Trends in Analytical Chemistry.

[3]  S. Timur,et al.  Smartphone-Based Multiplexed Biosensing Tools for Health Monitoring , 2022, Biosensors.

[4]  S. Raghuwanshi,et al.  SPR Based Biosensing Chip for COVID-19 Diagnosis—A Review , 2022, IEEE Sensors Journal.

[5]  M. de la Guardia,et al.  State of the art: Lateral flow assays toward the point-of-care foodborne pathogenic bacteria detection in food samples. , 2022, Comprehensive reviews in food science and food safety.

[6]  A. Mokhtarzadeh,et al.  Applications of magnetic materials in the fabrication of microfluidic-based sensing systems: Recent Advances , 2021, Microchemical Journal.

[7]  M. Hoorfar,et al.  Portable on-chip colorimetric biosensing platform integrated with a smartphone for label/PCR-free detection of Cryptosporidium RNA , 2021, Scientific Reports.

[8]  Farzad Seidi,et al.  Smartphone based immunosensors as next generation of healthcare tools: Technical and analytical overview towards improvement of personalized medicine , 2021, TrAC Trends in Analytical Chemistry.

[9]  K. Chellappan,et al.  Image Processing for mHealth-Based Approach to Detect the Local Tissue Inflammation in Cutaneous Leishmaniasis: A Proof of Concept Study , 2021, Computational and mathematical methods in medicine.

[10]  Jingting Luo,et al.  Effective utilization of quartz crystal microbalance as a tool for biosensing applications , 2021 .

[11]  R. Madhubala,et al.  Rapid diagnosis of Leishmania infection with a portable loop-mediated isothermal amplification device , 2021, Journal of Biosciences.

[12]  S. Daunert,et al.  On-site detection of food and waterborne bacteria - current technologies, challenges, and future directions. , 2021, Trends in food science & technology.

[13]  E. Pereira,et al.  Biosensor Based Immunoassay: A New Approach for Serotyping of Toxoplasma gondii , 2021, Nanomaterials.

[14]  Cody S. Carrell,et al.  Microfluidic Paper-Based Analytical Devices: From Design to Applications. , 2021, Chemical reviews.

[15]  W. Batchelor,et al.  ASSURED‐compliant point‐of‐care diagnostics for the detection of human viral infections , 2021, Reviews in Medical Virology.

[16]  B. Zheng,et al.  A novel loop-mediated isothermal amplification-lateral-flow-dipstick (LAMP-LFD) device for rapid detection of Toxoplasma gondii in the blood of stray cats and dogs , 2021, Parasite.

[17]  M. Bertotti,et al.  Microfluidic device based on electrodeposited Nanoporous Gold/Carbon Nanotubes for Plasmodium vivax detection , 2021 .

[18]  A. Muro,et al.  LAMP in Neglected Tropical Diseases: A Focus on Parasites , 2021, Diagnostics.

[19]  Ali Turab Jafry,et al.  Paper-based microfluidics: Simplified fabrication and assay methods , 2021 .

[20]  S. Dutta,et al.  Recent trends in smartphone-based detection for biomedical applications: a review , 2021, Analytical and Bioanalytical Chemistry.

[21]  S. Anand,et al.  Recent advances in nanomaterials based biosensors for point of care (PoC) diagnosis of Covid-19 – A minireview , 2021, TrAC Trends in Analytical Chemistry.

[22]  Mohd Javaid,et al.  Biosensors applications in medical field: A brief review , 2021 .

[23]  B. Neupane,et al.  A smartphone microscopic method for simultaneous detection of (oo)cysts of Cryptosporidium and Giardia , 2020, PLoS neglected tropical diseases.

[24]  A. Batista,et al.  Novel approaches for colorimetric measurements in analytical chemistry - A review. , 2020, Analytica chimica acta.

[25]  P. Goswami,et al.  A smartphone-based fiber-optic aptasensor for label-free detection of Plasmodium falciparum glutamate dehydrogenase , 2020 .

[26]  Lei Huang,et al.  A smartphone-based biomedical sensory system. , 2020, The Analyst.

[27]  Shengwei Zhang,et al.  Smartphone-based cytometric biosensors for point-of-care cellular diagnostics , 2020 .

[28]  J. Raba,et al.  Electrochemical microfluidic immunosensor based on TES-AuNPs@Fe3O4 and CMK-8 for IgG anti-Toxocara canis determination. , 2020, Analytica chimica acta.

[29]  Gisela Ruiz-Vega,et al.  Electrochemical POC device for fast malaria quantitative diagnosis in whole blood by using magnetic beads, Poly-HRP and microfluidic paper electrodes. , 2019, Biosensors & bioelectronics.

[30]  P. Kwan,et al.  Ultrasensitive and label-free biosensor for the detection of Plasmodium falciparum histidine-rich protein II in saliva , 2019, Scientific Reports.

[31]  L. Kubota,et al.  Trypanosoma cruzi virulence factors for the diagnosis of Chagas´disease. , 2019, ACS infectious diseases.

[32]  W. Alves,et al.  Peptide-Based Assemblies on Electrospun Polyamide-6/Chitosan Nanofibers for Detecting Visceral Leishmaniasis Antibodies , 2019, ACS Applied Electronic Materials.

[33]  Lihua Xiao,et al.  Cryptosporidium parvum and Cryptosporidium hominis subtypes in crab-eating macaques , 2019, Parasites & Vectors.

[34]  Yun‐Sung Lee,et al.  Enhanced electrochemical performance for EDLC using ordered mesoporous carbons (CMK-3 and CMK-8): Role of mesopores and mesopore structures , 2019, Journal of Alloys and Compounds.

[35]  Ahmadi,et al.  Development of a Lateral Flow Immunoassay Using Recombinant Dense Granular Antigen (GRA) 7 to Detect Anti-Toxoplasma gondii IgG Antibodies , 2019 .

[36]  N. Saravia,et al.  Developing mobile health applications for neglected tropical disease research , 2018, PLoS neglected tropical diseases.

[37]  Michael R. Elliott,et al.  Alarmin S100A11 initiates a chemokine response to the human pathogen Toxoplasma gondii , 2018, Nature Immunology.

[38]  Roozbeh Javad Kalbasi,et al.  A novel bi-functional metal/solid acid catalyst for the direct reductive amination of nitroarenes synthesized on a resistant mesoporous carbon (CMK-8) support , 2018, Journal of Porous Materials.

[39]  C. Baggiani,et al.  A versatile and sensitive lateral flow immunoassay for the rapid diagnosis of visceral leishmaniasis , 2018, Analytical and Bioanalytical Chemistry.

[40]  Simon Chi-Chin Shiu,et al.  A portable microfluidic Aptamer-Tethered Enzyme Capture (APTEC) biosensor for malaria diagnosis. , 2018, Biosensors & bioelectronics.

[41]  L. Robertson,et al.  Foodborne parasites: Outbreaks and outbreak investigations. A meeting report from the European network for foodborne parasites (Euro-FBP) , 2018, Food and waterborne parasitology.

[42]  J. Raba,et al.  Development of a nanostructured immunosensor for early and in situ detection of Xanthomonas arboricola in agricultural food production. , 2017, Talanta.

[43]  L. Putignani,et al.  Detection and prevalence of protozoan parasites in ready-to-eat packaged salads on sale in Italy. , 2017, Food microbiology.

[44]  N. Gopal,et al.  Detection of Plasmodium Aldolase Using a Smartphone and Microfluidic Enzyme Linked Immunosorbent Assay , 2017, Malaria research and treatment.

[45]  Paolo Dario,et al.  Smartphone-Based Food Diagnostic Technologies: A Review , 2017, Sensors.

[46]  J. Raba,et al.  Microfluidic immunosensor based on mesoporous silica platform and CMK-3/poly-acrylamide-co-methacrylate of dihydrolipoic acid modified gold electrode for cancer biomarker detection. , 2017, Analytica chimica acta.

[47]  M. Wallon,et al.  Evaluation of the LDBIO point of care test for the combined detection of toxoplasmic IgG and IgM. , 2017, Clinica chimica acta; international journal of clinical chemistry.

[48]  S. Svärd,et al.  An up-date on Giardia and giardiasis. , 2016, Current opinion in microbiology.

[49]  E. Karagouni,et al.  Gold nanoparticle-based lateral flow biosensor for rapid visual detection of Leishmania-specific DNA amplification products. , 2016, Journal of microbiological methods.

[50]  K. M. Koczula,et al.  Lateral flow assays , 2016, Essays in biochemistry.

[51]  Charles K. Toth,et al.  Remote sensing platforms and sensors: A survey , 2016 .

[52]  Anshuman Bhardwaj,et al.  UAVs as remote sensing platform in glaciology: Present applications and future prospects , 2016 .

[53]  M. Campàs,et al.  New advances in electrochemical biosensors for the detection of toxins: Nanomaterials, magnetic beads and microfluidics systems. A review. , 2016, Analytica chimica acta.

[54]  J. Raba,et al.  Epithelial cancer biomarker EpCAM determination in peripheral blood samples using a microfluidic immunosensor based in silver nanoparticles as platform , 2015 .

[55]  Joshua D. Swartz,et al.  Ni(II)NTA AuNPs as a low-resource malarial diagnostic platform for the rapid colorimetric detection of Plasmodium falciparum Histidine-Rich Protein-2. , 2015, Talanta.

[56]  H. Gamble 2 – Trends in food production practices relative to foodborne parasites , 2015 .

[57]  N. Radman,et al.  Toxocariasis: seroprevalence in abandoned-institutionalized children and infants. , 2014, Revista Argentina de microbiologia.

[58]  J. Fillaux,et al.  Laboratory diagnosis of human toxocariasis. , 2013, Veterinary parasitology.

[59]  Jeong-Yeol Yoon,et al.  Field-deployable and near-real-time optical microfluidic biosensors for single-oocyst-level detection of Cryptosporidium parvum from field water samples. , 2012, Journal of environmental monitoring : JEM.

[60]  D. Stark,et al.  Enteric Protozoa in the Developed World: a Public Health Perspective , 2012, Clinical Microbiology Reviews.

[61]  J. R. Stothard,et al.  Assessing the zoonotic potential of Ascaris suum and Trichuris suis: looking to the future from an analysis of the past , 2012, Journal of Helminthology.

[62]  Julio Raba,et al.  A microfluidic device based on a screen-printed carbon electrode with electrodeposited gold nanoparticles for the detection of IgG anti-Trypanosoma cruzi antibodies. , 2011, The Analyst.

[63]  S. Svärd,et al.  Behind the smile: cell biology and disease mechanisms of Giardia species , 2010, Nature Reviews Microbiology.

[64]  J. Alvar,et al.  Complexities of Assessing the Disease Burden Attributable to Leishmaniasis , 2008, PLoS neglected tropical diseases.

[65]  Sun-Hee Kim,et al.  Toxocariasis and ingestion of raw cow liver in patients with eosinophilia. , 2008, The Korean journal of parasitology.

[66]  D. Lim,et al.  Development of a Cryptosporidium oocyst assay using an automated fiber optic-based biosensor , 2007, Journal of biological engineering.

[67]  G. Whitesides The origins and the future of microfluidics , 2006, Nature.

[68]  Samar C Sarkar,et al.  Cryptosporidiosis an important zoonotic disease: a review article. , 2006 .

[69]  R C Andrew Thompson,et al.  The zoonotic significance and molecular epidemiology of Giardia and giardiasis. , 2004, Veterinary parasitology.

[70]  R A Durst,et al.  Detection of viable Cryptosporidium parvum using DNA-modified liposomes in a microfluidic chip. , 2001, Analytical chemistry.