Reactive transport through an array of cells with semi-permeable membranes

On considere la diffusion, la convection et les reactions chimiques non lineaires a travers un arrangement periodique de cellules. On suppose que chaque cellule contient des corps poreux entoures de membranes semi-permeables, c'est-a-dire qu'il y a liaison non lineaire entre les flux et les concentrations sur les interfaces cellules-fluide. Nous considerons la limite, quand le nombre de cellules tend vers l'infini et en meme temps lorsque leur volume tend vers zero, tout en conservant la meme fraction de volume. Notre probleme initial se comporte a grande echelle comme un probleme non lineaire ou interviennent deux echelles d'espace, ― une echelle globale et une echelle locale

[1]  A. Mikelić,et al.  Homogenization of nonstationary Navier-Stokes equations in a domain with a grained boundary , 1991 .

[2]  Grégoire Allaire,et al.  Homogenization of the stokes flow in a connected porous medium , 1989 .

[3]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[4]  A transport model with micro- and macro-structure , 1992 .

[5]  Todd Arbogast,et al.  Derivation of the double porosity model of single phase flow via homogenization theory , 1990 .

[6]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[7]  Todd Arbogast,et al.  Modeling Of Naturally Fractured Reservoirs By Formal Homogenization Techniques , 1991 .

[8]  U. Hornung Homogenization of Miscible Displacement in Unsaturated Aggregated Soils , 1991 .

[9]  F. Murat,et al.  Compacité par compensation , 1978 .

[10]  Ibrahim Aganović,et al.  Homogenization of stationary flow of miscible fluids in a domain with a grained boundary , 1988 .

[11]  A Model for Chemical Reactions in Porous Media , 1987 .

[12]  G. Nguetseng A general convergence result for a functional related to the theory of homogenization , 1989 .

[13]  Robert Lipton,et al.  Darcy's law for slow viscous flow past a stationary array of bubbles , 1990 .

[14]  A convergence theorem for homogenization of two-phase miscible flow through fractured , 1989 .

[15]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[16]  D. Cioranescu,et al.  Homogenization in open sets with holes , 1979 .

[17]  G. Allaire Homogénéisation et convergence à deux échelles. Application à un problème de convection diffusion , 1991 .

[18]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[19]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[20]  Ralph E. Showalter,et al.  Diffusion models for fractured media , 1990 .

[21]  N. Bakhvalov,et al.  Homogenisation: Averaging Processes in Periodic Media , 1989 .

[22]  Ulrich Hornung,et al.  Miscible Displacement in Porous Media Influenced by Mobile and Immobile Water , 1991 .

[23]  Willi Jäger,et al.  Diffusion, convection, adsorption, and reaction of chemicals in porous media , 1991 .

[24]  Ulrich Hornung Applications of the Homogenization Method to Flow and Transport in Porous Media , 1991 .

[25]  A. Mikelić,et al.  Homogenization of nonstationary flow of a two-constituant mixture through a porous medium , 1992 .