Adaptive Q-S (lag, anticipated, and complete) time-varying synchronization and parameters identification of uncertain delayed neural networks.

In this paper, a new type of generalized Q-S (lag, anticipated, and complete) time-varying synchronization is defined. Adaptive Q-S (lag, anticipated, and complete) time-varying synchronization and parameters identification of uncertain delayed neural networks have been considered, where the delays are multiple time-varying delays. A novel control method is given by using the Lyapunov functional method. With this new and effective method, parameters identification and Q-S (lag, anticipated, and complete) time-varying synchronization can be achieved simultaneously. Simulation results are given to justify the theoretical analysis in this paper.

[1]  J J Hopfield,et al.  Neurons with graded response have collective computational properties like those of two-state neurons. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Lin-Bao Yang,et al.  Cellular neural networks: theory , 1988 .

[3]  J.J. Hopfield,et al.  Artificial neural networks , 1988, IEEE Circuits and Devices Magazine.

[4]  L.O. Chua,et al.  Sights and sounds of chaos (autonomous and nonautonomous circuits) , 1988, IEEE Circuits and Devices Magazine.

[5]  BART KOSKO,et al.  Bidirectional associative memories , 1988, IEEE Trans. Syst. Man Cybern..

[6]  S. Ge,et al.  Adaptive synchronization of uncertain chaotic systems via backstepping design , 2001 .

[7]  Ke-Qiu Chen,et al.  Localized interface optical-phonon modes in two coupled semi-infinite superlattices , 2002 .

[8]  Hongtao Lu Chaotic attractors in delayed neural networks , 2002 .

[9]  Jinhu Lu,et al.  Parameters identification and synchronization of chaotic systems based upon adaptive control , 2002 .

[10]  Rongwei Guo,et al.  Identifying parameter by identical synchronization between different systems. , 2004, Chaos.

[11]  Jinhu Lu,et al.  Adaptive synchronization of uncertain Rossler hyperchaotic system based on parameter identification , 2004 .

[12]  Suochun Zhang,et al.  Adaptive backstepping synchronization of uncertain chaotic system , 2004 .

[13]  Guanrong Chen,et al.  Robust adaptive synchronization of uncertain dynamical networks , 2004 .

[14]  Jinde Cao,et al.  Absolute exponential stability of recurrent neural networks with Lipschitz-continuous activation functions and time delays , 2004, Neural Networks.

[15]  Ju H. Park Adaptive synchronization of hyperchaotic Chen system with uncertain parameters , 2005 .

[16]  Jinde Cao,et al.  Hopf bifurcation and stability of periodic solutions for van der Pol equation with time delay , 2005 .

[17]  Jinde Cao,et al.  Synchronization criteria of Lur’e systems with time-delay feedback control , 2005 .

[18]  Wei Lin,et al.  Complete synchronization of the noise-perturbed Chua's circuits. , 2005, Chaos.

[19]  Zhenya Yan,et al.  A new scheme to generalized (lag, anticipated, and complete) synchronization in chaotic and hyperchaotic systems. , 2005, Chaos.

[20]  Jamal Daafouz,et al.  Adaptive synchronization of two chaotic systems consisting of modified Van der Pol–Duffing and Chua oscillators , 2005 .

[21]  Ned J Corron,et al.  Lag and anticipating synchronization without time-delay coupling. , 2005, Chaos.

[22]  D. Armbruster,et al.  Does synchronization of networks of chaotic maps lead to control? , 2005, Chaos.

[23]  Jinde Cao,et al.  Global asymptotic and robust stability of recurrent neural networks with time delays , 2005, IEEE Trans. Circuits Syst. I Regul. Pap..

[24]  Jamal Daafouz,et al.  Adaptive synchronization of uncertain chaotic colpitts oscillators based on parameter identification , 2005 .

[25]  Zhenya Yan,et al.  Q-S (lag or anticipated) synchronization backstepping scheme in a class of continuous-time hyperchaotic systems--a symbolic-numeric computation approach. , 2005, Chaos.

[26]  P. Woafo,et al.  Adaptive synchronization of a modified and uncertain chaotic Van der Pol-Duffing oscillator based on parameter identification , 2005 .

[27]  Thomas L Carroll Chaotic systems that are robust to added noise. , 2005, Chaos.

[28]  Jinde Cao,et al.  Adaptive synchronization of neural networks with or without time-varying delay. , 2006, Chaos.

[29]  Tianping Chen,et al.  Robust synchronization of delayed neural networks based on adaptive control and parameters identification , 2006 .

[30]  Jinde Cao,et al.  Stability and Hopf bifurcation analysis on a four-neuron BAM neural network with time delays , 2006 .