Monotone corrections for generic cell-centered finite volume approximations of anisotropic diffusion equations

We present a nonlinear technique to correct a general finite volume scheme for anisotropic diffusion problems, which provides a discrete maximum principle. We point out general properties satisfied by many finite volume schemes and prove the proposed corrections also preserve these properties. We then study two specific corrections proving, under numerical assumptions, that the corresponding approximate solutions converge to the continuous one as the size of the mesh tends to zero. Finally we present numerical results showing that these corrections suppress local minima produced by the original finite volume scheme.

[1]  Ivar Aavatsmark,et al.  Discretization on Unstructured Grids For Inhomogeneous, Anisotropic Media. Part II: Discussion And Numerical Results , 1998, SIAM J. Sci. Comput..

[2]  Zhiqiang Sheng,et al.  The finite volume scheme preserving extremum principle for diffusion equations on polygonal meshes , 2011, J. Comput. Phys..

[3]  Christophe Le Potier,et al.  Schéma volumes finis pour des opérateurs de diffusion fortement anisotropes sur des maillages non structurés , 2005 .

[4]  R. Eymard,et al.  Discretisation of heterogeneous and anisotropic diffusion problems on general non-conforming meshes. SUSHI: a scheme using stabilisation and hybrid interfaces , 2008, 0801.1430.

[5]  Roland Masson,et al.  Convergence of Finite Volume MPFA O type Schemes for Heterogeneous Anisotropic Diffusion Problems on General Meshes , 2010 .

[6]  Ivar Aavatsmark,et al.  Discretization on Unstructured Grids for Inhomogeneous, Anisotropic Media. Part I: Derivation of the Methods , 1998, SIAM J. Sci. Comput..

[7]  Ivan Yotov,et al.  Local flux mimetic finite difference methods , 2009, Numerische Mathematik.

[8]  Zhiqiang Sheng,et al.  Monotone finite volume schemes for diffusion equations on polygonal meshes , 2008, J. Comput. Phys..

[9]  Roland Masson,et al.  Convergence of the finite volume MPFA O scheme for heterogeneous anisotropic diffusion problems on general meshes , 2008 .

[10]  Christophe Le Potier,et al.  A nonlinear finite volume scheme satisfying maximum and minimum principles for diffusion operators , 2009 .

[11]  Raphaèle Herbin,et al.  A nine point finite volume scheme for the simulation of diffusion in heterogeneous media , 2009 .

[12]  Raphaèle Herbin,et al.  A new colocated finite volume scheme for the incompressible Navier-Stokes equations on general non matching grids , 2007 .

[13]  Thierry Gallouët,et al.  A cell-centred finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension , 2006 .

[14]  Alexandre Ern,et al.  Discrete maximum principle for Galerkin approximations of the Laplace operator on arbitrary meshes , 2004 .

[15]  Ivar Aavatsmark,et al.  Monotonicity of control volume methods , 2007, Numerische Mathematik.

[16]  Alain Genty,et al.  Maximum and Minimum Principles for Radionuclide Transport Calculations in Geological Radioactive Waste Repository: Comparison Between a Mixed Hybrid Finite Element Method and Finite Volume Element discretizations , 2011 .

[17]  Daniil Svyatskiy,et al.  Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes , 2009, J. Comput. Phys..

[18]  Jérôme Droniou,et al.  Construction and Convergence Study of Schemes Preserving the Elliptic Local Maximum Principle , 2011, SIAM J. Numer. Anal..

[19]  B. Després Non linear finite volume schemes for the heat equation in 1D. , 2012 .

[20]  I. V. Kapyrin A family of monotone methods for the numerical solution of three-dimensional diffusion problems on unstructured tetrahedral meshes , 2007 .

[21]  R. Eymard,et al.  3D Benchmark on Discretization Schemes for Anisotropic Diffusion Problems on General Grids , 2008 .

[22]  Christophe Le Potier Correction non linéaire et principe du maximum pour la discrétisation d'opérateurs de diffusion avec des schémas volumes finis centrés sur les mailles , 2010 .