Monotone corrections for generic cell-centered finite volume approximations of anisotropic diffusion equations
暂无分享,去创建一个
Clément Cancès | Christophe Le Potier | Mathieu Cathala | C. Cancès | C. L. Potier | Mathieu Cathala
[1] Ivar Aavatsmark,et al. Discretization on Unstructured Grids For Inhomogeneous, Anisotropic Media. Part II: Discussion And Numerical Results , 1998, SIAM J. Sci. Comput..
[2] Zhiqiang Sheng,et al. The finite volume scheme preserving extremum principle for diffusion equations on polygonal meshes , 2011, J. Comput. Phys..
[3] Christophe Le Potier,et al. Schéma volumes finis pour des opérateurs de diffusion fortement anisotropes sur des maillages non structurés , 2005 .
[4] R. Eymard,et al. Discretisation of heterogeneous and anisotropic diffusion problems on general non-conforming meshes. SUSHI: a scheme using stabilisation and hybrid interfaces , 2008, 0801.1430.
[5] Roland Masson,et al. Convergence of Finite Volume MPFA O type Schemes for Heterogeneous Anisotropic Diffusion Problems on General Meshes , 2010 .
[6] Ivar Aavatsmark,et al. Discretization on Unstructured Grids for Inhomogeneous, Anisotropic Media. Part I: Derivation of the Methods , 1998, SIAM J. Sci. Comput..
[7] Ivan Yotov,et al. Local flux mimetic finite difference methods , 2009, Numerische Mathematik.
[8] Zhiqiang Sheng,et al. Monotone finite volume schemes for diffusion equations on polygonal meshes , 2008, J. Comput. Phys..
[9] Roland Masson,et al. Convergence of the finite volume MPFA O scheme for heterogeneous anisotropic diffusion problems on general meshes , 2008 .
[10] Christophe Le Potier,et al. A nonlinear finite volume scheme satisfying maximum and minimum principles for diffusion operators , 2009 .
[11] Raphaèle Herbin,et al. A nine point finite volume scheme for the simulation of diffusion in heterogeneous media , 2009 .
[12] Raphaèle Herbin,et al. A new colocated finite volume scheme for the incompressible Navier-Stokes equations on general non matching grids , 2007 .
[13] Thierry Gallouët,et al. A cell-centred finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension , 2006 .
[14] Alexandre Ern,et al. Discrete maximum principle for Galerkin approximations of the Laplace operator on arbitrary meshes , 2004 .
[15] Ivar Aavatsmark,et al. Monotonicity of control volume methods , 2007, Numerische Mathematik.
[16] Alain Genty,et al. Maximum and Minimum Principles for Radionuclide Transport Calculations in Geological Radioactive Waste Repository: Comparison Between a Mixed Hybrid Finite Element Method and Finite Volume Element discretizations , 2011 .
[17] Daniil Svyatskiy,et al. Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes , 2009, J. Comput. Phys..
[18] Jérôme Droniou,et al. Construction and Convergence Study of Schemes Preserving the Elliptic Local Maximum Principle , 2011, SIAM J. Numer. Anal..
[19] B. Després. Non linear finite volume schemes for the heat equation in 1D. , 2012 .
[20] I. V. Kapyrin. A family of monotone methods for the numerical solution of three-dimensional diffusion problems on unstructured tetrahedral meshes , 2007 .
[21] R. Eymard,et al. 3D Benchmark on Discretization Schemes for Anisotropic Diffusion Problems on General Grids , 2008 .
[22] Christophe Le Potier. Correction non linéaire et principe du maximum pour la discrétisation d'opérateurs de diffusion avec des schémas volumes finis centrés sur les mailles , 2010 .