Networks Become Navigable as Nodes Move and Forget

We propose a dynamic process for network evolution, aiming at explaining the emergence of the small world phenomenon, i.e., the statistical observation that any pair of individuals are linked by a short chain of acquaintances computable by a simple decentralized routing algorithm, known as greedy routing. Our model is based on the combination of two dynamics: a random walk (spatial) process, and an harmonic forgetting (temporal) process. Both processes reflect natural behaviors of the individuals, viewed as nodes in the network of inter-individual acquaintances. We prove that, in k-dimensional lattices, the combination of these two processes generates long-range links mutually independently distributed as a k-harmonic distribution. We analyze the performances of greedy routing at the stationary regime of our process, and prove that the expected number of steps for routing from any source to any target in any multidimensional lattice is a polylogarithmic function of the distance between the two nodes in the lattice. Up to our knowledge, these results are the first formal proof that navigability in small worlds can emerge from a dynamic process for network evolution. Our dynamica process can find practical applications to the design of spatial gossip and resource location protocols.

[1]  D. Vere-Jones Markov Chains , 1972, Nature.

[2]  Christophe Diot,et al.  Impact of Human Mobility on Opportunistic Forwarding Algorithms , 2007, IEEE Transactions on Mobile Computing.

[3]  Pierre Fraigniaud,et al.  Universal augmentation schemes for network navigability: overcoming the √n-barrier , 2007, SPAA '07.

[4]  Jon Kleinberg,et al.  The link prediction problem for social networks , 2003, CIKM '03.

[5]  Jon M. Kleinberg,et al.  The small-world phenomenon: an algorithmic perspective , 2000, STOC '00.

[6]  Rabin K. Patra,et al.  Routing in a delay tolerant network , 2004, SIGCOMM '04.

[7]  Philippe Duchon,et al.  Non-Searchability of Random Power-Law Graphs , 2007, OPODIS.

[8]  D. Watts,et al.  An Experimental Study of Search in Global Social Networks , 2003, Science.

[9]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[10]  Béla Bollobás,et al.  The Diameter of a Cycle Plus a Random Matching , 1988, SIAM J. Discret. Math..

[11]  David Tse,et al.  Mobility increases the capacity of ad-hoc wireless networks , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[12]  Naveen Garg,et al.  FSTTCS 2006: Foundations of Software Technology and Theoretical Computer Science, 26th International Conference, Kolkata, India, December 13-15, 2006, Proceedings , 2006, FSTTCS.

[13]  宮沢 政清,et al.  P. Bremaud 著, Markov Chains, (Gibbs fields, Monte Carlo simulation and Queues), Springer-Verlag, 1999年 , 2000 .

[14]  Pierre Fraigniaud,et al.  Opportunistic spatial gossip over mobile social networks , 2008, WOSN '08.

[15]  John Odentrantz,et al.  Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues , 2000, Technometrics.

[16]  H. Simon,et al.  ON A CLASS OF SKEW DISTRIBUTION FUNCTIONS , 1955 .

[17]  Jon M. Kleinberg,et al.  Spatial gossip and resource location protocols , 2001, JACM.

[18]  Matthieu Latapy,et al.  Combining the Use of Clustering and Scale-Free Nature of User Exchanges into a Simple and Efficient P2P System , 2005, Euro-Par.

[19]  Aleksandrs Slivkins Distance estimation and object location via rings of neighbors , 2006, Distributed Computing.

[20]  P. Fraigniaud A New Perspective on the Small-World Phenomenon: Greedy Routing in Tree-Decomposed Graphs , 2005 .

[21]  Pierre Fraigniaud,et al.  Greedy Routing in Tree-Decomposed Graphs , 2005, ESA.

[22]  Stéphane Pérennes,et al.  Asymptotically Optimal Solutions for Small World Graphs , 2005, DISC.

[23]  Pierre Fraigniaud,et al.  A doubling dimension threshold Θ(log log n) for augmented graph navigability , 2006 .

[24]  Jasmine Novak,et al.  Geographic routing in social networks , 2005, Proc. Natl. Acad. Sci. USA.

[25]  Cristopher Moore,et al.  How Do Networks Become Navigable , 2003 .

[26]  Oskar Sandberg,et al.  Neighbor Selection and Hitting Probability in Small-World Graphs , 2007, ArXiv.

[27]  Ian Clarke,et al.  The evolution of navigable small-world networks , 2006, ArXiv.

[28]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[29]  Andrew Tomkins,et al.  Navigating Low-Dimensional and Hierarchical Population Networks , 2006, ESA.

[30]  Ittai Abraham,et al.  Object location using path separators , 2006, PODC '06.

[31]  Pierre Fraigniaud,et al.  A Doubling Dimension Threshold Theta(loglogn) for Augmented Graph Navigability , 2006, ESA.

[32]  Jon M. Kleinberg,et al.  The link-prediction problem for social networks , 2007, J. Assoc. Inf. Sci. Technol..

[33]  Rajeev Motwani,et al.  Randomized algorithms , 1996, CSUR.

[34]  James Aspnes,et al.  Fault-tolerant routing in peer-to-peer systems , 2002, PODC '02.

[35]  Sharon L. Milgram,et al.  The Small World Problem , 1967 .

[36]  George Giakkoupis,et al.  On the complexity of greedy routing in ring-based peer-to-peer networks , 2007, PODC '07.

[37]  Lali Barrière,et al.  Efficient Routing in Networks with Long Range Contacts , 2001, DISC.

[38]  Doug Terry,et al.  Epidemic algorithms for replicated database maintenance , 1988, OPSR.

[39]  Jon M. Kleinberg,et al.  Protocols and impossibility results for gossip-based communication mechanisms , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..