Semiclassical dispersion corrections efficiently improve multi-configurational quantum chemistry

Multi-configurational wave functions are known to describe electronic structure across a Born-Oppenheimer surface qualitatively correct. However, for quantitative reaction energies, dynamical correlation originating from the many configurations involving excitations out of the restricted orbital space, the active space, must be considered. Standard procedures involve approximations that eventually limit the ultimate accuracy achievable (most prominently, multi-reference perturbation theory). At the same time, the computational cost increase dramatically due to the necessity to obtain higher-order reduced density matrices. It is this disproportion that leads us here to propose a MC-srDFT-D hybrid approach of semiclassical dispersion (D) corrections to cover long-range dynamical correlation in a multi-configurational (MC) wave function theory which may include short-range (sr) dynamical correlation by density functional theory (DFT) without double counting. We demonstrate that the reliability of this approach is very good (at negligible cost), especially when considering that standard second-order multi-reference perturbation theory usually overestimates dispersion interactions.

[1]  Markus Reiher,et al.  Gaussian Process-Based Refinement of Dispersion Corrections. , 2019, Journal of chemical theory and computation.

[2]  Markus Reiher,et al.  autoCAS: A Program for Fully Automated Multiconfigurational Calculations , 2019, J. Comput. Chem..

[3]  Donald G Truhlar,et al.  Weak Interactions in Alkaline Earth Metal Dimers by Pair-Density Functional Theory. , 2019, The journal of physical chemistry letters.

[4]  E. Giner,et al.  Range-separated multideterminant density-functional theory with a short-range correlation functional of the on-top pair density. , 2019, The Journal of chemical physics.

[5]  C. Bannwarth,et al.  A generally applicable atomic-charge dependent London dispersion correction. , 2018, The Journal of chemical physics.

[6]  Reinhold Schneider,et al.  Numerical and Theoretical Aspects of the DMRG-TCC Method Exemplified by the Nitrogen Dimer , 2018, Journal of chemical theory and computation.

[7]  Francesco A Evangelista,et al.  Perspective: Multireference coupled cluster theories of dynamical electron correlation. , 2018, The Journal of chemical physics.

[8]  Qianli Ma,et al.  Explicitly correlated local coupled‐cluster methods using pair natural orbitals , 2018, WIREs Computational Molecular Science.

[9]  Ali Alavi,et al.  The Intricate Case of Tetramethyleneethane: A Full Configuration Interaction Quantum Monte Carlo Benchmark and Multireference Coupled Cluster Studies. , 2018, Journal of chemical theory and computation.

[10]  M. Reiher,et al.  Statistical Analysis of Semiclassical Dispersion Corrections. , 2018, Journal of chemical theory and computation.

[11]  Julien Toulouse,et al.  Multiconfigurational short-range density-functional theory for open-shell systems. , 2017, The Journal of chemical physics.

[12]  Jérôme F Gonthier,et al.  Compressed representation of dispersion interactions and long-range electronic correlations. , 2017, The Journal of chemical physics.

[13]  Stefan Grimme,et al.  Extension of the D3 dispersion coefficient model. , 2017, The Journal of chemical physics.

[14]  Markus Reiher,et al.  Automated Identification of Relevant Frontier Orbitals for Chemical Compounds and Processes. , 2017, Chimia.

[15]  Donald G Truhlar,et al.  Multiconfiguration Pair-Density Functional Theory: A New Way To Treat Strongly Correlated Systems. , 2017, Accounts of chemical research.

[16]  Ali Alavi,et al.  Semistochastic Heat-Bath Configuration Interaction Method: Selected Configuration Interaction with Semistochastic Perturbation Theory. , 2016, Journal of chemical theory and computation.

[17]  Frank Neese,et al.  Decomposition of Intermolecular Interaction Energies within the Local Pair Natural Orbital Coupled Cluster Framework. , 2016, Journal of chemical theory and computation.

[18]  C J Umrigar,et al.  Heat-Bath Configuration Interaction: An Efficient Selected Configuration Interaction Algorithm Inspired by Heat-Bath Sampling. , 2016, Journal of chemical theory and computation.

[19]  Frank Neese,et al.  Coupled Cluster Method with Single and Double Excitations Tailored by Matrix Product State Wave Functions. , 2016, The journal of physical chemistry letters.

[20]  Markus Reiher,et al.  The Delicate Balance of Static and Dynamic Electron Correlation. , 2016, Journal of chemical theory and computation.

[21]  Garnet Kin-Lic Chan,et al.  Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms. , 2016, The Journal of chemical physics.

[22]  Erik D Hedegård,et al.  Investigation of Multiconfigurational Short-Range Density Functional Theory for Electronic Excitations in Organic Molecules. , 2016, Journal of chemical theory and computation.

[23]  C. Bannwarth,et al.  Dispersion-Corrected Mean-Field Electronic Structure Methods. , 2016, Chemical reviews.

[24]  Martin Head-Gordon,et al.  A deterministic alternative to the full configuration interaction quantum Monte Carlo method. , 2016, The Journal of chemical physics.

[25]  Markus Reiher,et al.  Automated Selection of Active Orbital Spaces. , 2016, Journal of chemical theory and computation.

[26]  Markus Reiher,et al.  New Approaches for ab initio Calculations of Molecules with Strong Electron Correlation. , 2015, Chimia.

[27]  M. Head‐Gordon,et al.  An energy decomposition analysis for second-order Møller-Plesset perturbation theory based on absolutely localized molecular orbitals. , 2015, The Journal of chemical physics.

[28]  Thomas Kjærgaard,et al.  Linear-Scaling Coupled Cluster with Perturbative Triple Excitations: The Divide-Expand-Consolidate CCSD(T) Model. , 2015, Journal of chemical theory and computation.

[29]  Wataru Mizukami,et al.  Density matrix renormalization group for ab initio calculations and associated dynamic correlation methods: A review of theory and applications , 2015 .

[30]  Markus Reiher,et al.  Density matrix renormalization group with efficient dynamical electron correlation through range separation. , 2015, The Journal of chemical physics.

[31]  F. Verstraete,et al.  Tensor product methods and entanglement optimization for ab initio quantum chemistry , 2014, 1412.5829.

[32]  Rebecca K. Carlson,et al.  Multiconfiguration Pair-Density Functional Theory. , 2014, Journal of chemical theory and computation.

[33]  Dimitri Van Neck,et al.  The density matrix renormalization group for ab initio quantum chemistry , 2014, The European Physical Journal D.

[34]  Yuki Kurashige,et al.  Multireference electron correlation methods with density matrix renormalisation group reference functions , 2014 .

[35]  Francesco A Evangelista,et al.  A driven similarity renormalization group approach to quantum many-body problems. , 2014, The Journal of chemical physics.

[36]  Luca Frediani,et al.  The Dalton quantum chemistry program system , 2013, Wiley interdisciplinary reviews. Computational molecular science.

[37]  Zoltán Rolik,et al.  An efficient linear-scaling CCSD(T) method based on local natural orbitals. , 2013, The Journal of chemical physics.

[38]  P. Pulay,et al.  The accuracy of quantum chemical methods for large noncovalent complexes. , 2013, Journal of chemical theory and computation.

[39]  Frank Neese,et al.  An efficient and near linear scaling pair natural orbital based local coupled cluster method. , 2013, The Journal of chemical physics.

[40]  M. Reiher,et al.  Entanglement Measures for Single- and Multireference Correlation Effects. , 2012, The journal of physical chemistry letters.

[41]  A. Tkatchenko,et al.  Accurate and efficient method for many-body van der Waals interactions. , 2012, Physical review letters.

[42]  Pavel Hobza,et al.  Assessment of the performance of MP2 and MP2 variants for the treatment of noncovalent interactions. , 2012, The journal of physical chemistry. A.

[43]  Ali Alavi,et al.  Investigation of the full configuration interaction quantum Monte Carlo method using homogeneous electron gas models. , 2012, The Journal of chemical physics.

[44]  Pavel Hobza,et al.  S66: A Well-balanced Database of Benchmark Interaction Energies Relevant to Biomolecular Structures , 2011, Journal of chemical theory and computation.

[45]  Andreas Köhn,et al.  Pilot applications of internally contracted multireference coupled cluster theory, and how to choose the cluster operator properly. , 2011, The Journal of chemical physics.

[46]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[47]  Sandeep Sharma,et al.  The density matrix renormalization group in quantum chemistry. , 2011, Annual review of physical chemistry.

[48]  Markus Reiher,et al.  New electron correlation theories for transition metal chemistry. , 2011, Physical chemistry chemical physics : PCCP.

[49]  Francesco A Evangelista,et al.  An orbital-invariant internally contracted multireference coupled cluster approach. , 2011, The Journal of chemical physics.

[50]  C. Corminboeuf,et al.  A generalized-gradient approximation exchange hole model for dispersion coefficients. , 2011, The Journal of chemical physics.

[51]  Markus Reiher,et al.  Construction of CASCI-type wave functions for very large active spaces. , 2011, The Journal of chemical physics.

[52]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[53]  Hiromi Nakai,et al.  Local response dispersion method. II. Generalized multicenter interactions. , 2010, The Journal of chemical physics.

[54]  Branislav Jansík,et al.  Linear scaling coupled cluster method with correlation energy based error control. , 2010, The Journal of chemical physics.

[55]  Clemence Corminboeuf,et al.  A System-Dependent Density-Based Dispersion Correction. , 2010, Journal of chemical theory and computation.

[56]  Ali Alavi,et al.  Approaching chemical accuracy using full configuration-interaction quantum Monte Carlo: a study of ionization potentials. , 2010, The Journal of chemical physics.

[57]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[58]  Markus Reiher,et al.  The Density Matrix Renormalization Group Algorithm in Quantum Chemistry , 2010 .

[59]  Hiromi Nakai,et al.  Density functional method including weak interactions: Dispersion coefficients based on the local response approximation. , 2009, The Journal of chemical physics.

[60]  Ali Alavi,et al.  Fermion Monte Carlo without fixed nodes: a game of life, death, and annihilation in Slater determinant space. , 2009, The Journal of chemical physics.

[61]  J. Stephen Binkley,et al.  Theoretical models incorporating electron correlation , 2009 .

[62]  A. Tkatchenko,et al.  Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. , 2009, Physical review letters.

[63]  J. Sólyom,et al.  Applications of Quantum Information in the Density-Matrix Renormalization Group , 2008 .

[64]  Debashree Ghosh,et al.  An Introduction to the Density Matrix Renormalization Group Ansatz in Quantum Chemistry , 2007, 0711.1398.

[65]  Slawomir M Cybulski,et al.  The origin of deficiency of the supermolecule second-order Moller-Plesset approach for evaluating interaction energies. , 2007, The Journal of chemical physics.

[66]  M. Reiher,et al.  Decomposition of density matrix renormalization group states into a Slater determinant basis. , 2007, The Journal of chemical physics.

[67]  R. Shepard The Multiconfiguration Self‐Consistent Field Method , 2007 .

[68]  B. Roos The Complete Active Space Self‐Consistent Field Method and its Applications in Electronic Structure Calculations , 2007 .

[69]  Julien Toulouse,et al.  On the universality of the long-/short-range separation in multiconfigurational density-functional theory. , 2007, The Journal of chemical physics.

[70]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[71]  P. Gori-Giorgi,et al.  A short-range gradient-corrected spin density functional in combination with long-range coupled-cluster methods: Application to alkali-metal rare-gas dimers , 2006 .

[72]  Martin Head-Gordon,et al.  A near linear-scaling smooth local coupled cluster algorithm for electronic structure. , 2006, The Journal of chemical physics.

[73]  S. White,et al.  Measuring orbital interaction using quantum information theory , 2005, cond-mat/0508524.

[74]  H. Werner,et al.  A short-range gradient-corrected density functional in long-range coupled-cluster calculations for rare gas dimers. , 2005, Physical chemistry chemical physics : PCCP.

[75]  A. Becke,et al.  A post-Hartree-Fock model of intermolecular interactions. , 2005, The Journal of chemical physics.

[76]  Andreas Savin,et al.  van der Waals forces in density functional theory: Perturbational long-range electron-interaction corrections , 2005, cond-mat/0505062.

[77]  A. Savin,et al.  Long-range/short-range separation of the electron-electron interaction in density functional theory , 2004, physics/0410062.

[78]  Stefan Grimme,et al.  Accurate description of van der Waals complexes by density functional theory including empirical corrections , 2004, J. Comput. Chem..

[79]  Seiichiro Ten-no,et al.  Explicitly correlated second order perturbation theory: introduction of a rational generator and numerical quadratures. , 2004, The Journal of chemical physics.

[80]  Roland Lindh,et al.  Main group atoms and dimers studied with a new relativistic ANO basis set , 2004 .

[81]  J. Sólyom,et al.  Optimizing the density-matrix renormalization group method using quantum information entropy , 2003 .

[82]  Frank Neese,et al.  A spectroscopy oriented configuration interaction procedure , 2003 .

[83]  R. Cimiraglia,et al.  n-electron valence state perturbation theory: A spinless formulation and an efficient implementation of the strongly contracted and of the partially contracted variants , 2002 .

[84]  Edward F. Valeev,et al.  Estimates of the Ab Initio Limit for π−π Interactions: The Benzene Dimer , 2002 .

[85]  A. Savin,et al.  Combining multideterminantal wave functions with density functionals to handle near-degeneracy in atoms and molecules , 2002 .

[86]  Celestino Angeli,et al.  N-electron valence state perturbation theory: a fast implementation of the strongly contracted variant , 2001 .

[87]  Celestino Angeli,et al.  Introduction of n-electron valence states for multireference perturbation theory , 2001 .

[88]  T. Cundari Computational Organometallic Chemistry , 2001 .

[89]  Hans-Joachim Werner,et al.  Low-order scaling local electron correlation methods. IV. Linear scaling local coupled-cluster (LCCSD) , 2001 .

[90]  K. Hallberg Density Matrix Renormalization , 1999, cond-mat/9910082.

[91]  P. Mach,et al.  Single-root multireference Brillouin-Wigner coupled-cluster theory: Applicability to the F2 molecule , 1998 .

[92]  Uttam Sinha Mahapatra,et al.  A state-specific multi-reference coupled cluster formalism with molecular applications , 1998 .

[93]  Andreas Savin,et al.  Combining long-range configuration interaction with short-range density functionals , 1997 .

[94]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[95]  Andreas Savin,et al.  Density functionals for the Yukawa electron-electron interaction , 1995 .

[96]  Manuela Merchán,et al.  Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions , 1995 .

[97]  White,et al.  Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.

[98]  Jean-Paul Malrieu,et al.  Specific CI calculation of energy differences: Transition energies and bond energies , 1993 .

[99]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[100]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[101]  Björn O. Roos,et al.  Excitation energies in the nickel atom studied with the complete active space SCF method and second-order perturbation theory , 1992 .

[102]  Björn O. Roos,et al.  Second-order perturbation theory with a complete active space self-consistent field reference function , 1992 .

[103]  B. Roos,et al.  Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions , 1990 .

[104]  Kerstin Andersson,et al.  Second-order perturbation theory with a CASSCF reference function , 1990 .

[105]  Paul G. Mezey,et al.  A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions , 1989 .

[106]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[107]  Renzo Cimiraglia,et al.  Recent advances in multireference second order perturbation CI: The CIPSI method revisited , 1987 .

[108]  P. Knowles,et al.  A second order multiconfiguration SCF procedure with optimum convergence , 1985 .

[109]  Michael W. Schmidt,et al.  Are atoms sic to molecular electronic wavefunctions? II. Analysis of fors orbitals , 1982 .

[110]  Michael W. Schmidt,et al.  Are atoms intrinsic to molecular electronic wavefunctions? III. Analysis of FORS configurations , 1982 .

[111]  H. Monkhorst,et al.  Coupled-cluster method for multideterminantal reference states , 1981 .

[112]  B. Roos,et al.  A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach , 1980 .

[113]  J. P. Malrieu,et al.  Iterative perturbation calculations of ground and excited state energies from multiconfigurational zeroth‐order wavefunctions , 1973 .

[114]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .