The use of explicit building blocks in evolutionary computation

This paper proposes a new algorithm to identify and compose building blocks. Building blocks are interpreted as common subsequences between good individuals. The proposed algorithm can extract building blocks from a population explicitly. Explicit building blocks are identified from shared alleles among multiple chromosomes. These building blocks are stored in an archive. They are recombined to generate offspring. The additively decomposable problems and hierarchical decomposable problems are used to validate the algorithm. The results are compared with the Bayesian optimisation algorithm, the hierarchical Bayesian optimisation algorithm, and the chi-square matrix. This proposed algorithm is simple, effective, and fast. The experimental results confirm that building block identification is an important process that guides the recombination procedure to improve the solutions. In addition, the method efficiently solves hard problems.

[1]  A. E. Eiben,et al.  Parameter Tuning of Evolutionary Algorithms: Generalist vs. Specialist , 2010, EvoApplications.

[2]  James R. Levenick,et al.  Metabits: Generic Endogenous Crossover Control , 1995, International Conference on Genetic Algorithms.

[3]  Zbigniew Michalewicz,et al.  Parameter Setting in Evolutionary Algorithms , 2007, Studies in Computational Intelligence.

[4]  D. E. Goldberg,et al.  Genetic Algorithms in Search, Optimization & Machine Learning , 1989 .

[5]  Robert Schaefer,et al.  Foundations of Global Genetic Optimization , 2007, Studies in Computational Intelligence.

[6]  A. E. Eiben,et al.  Parameter tuning for configuring and analyzing evolutionary algorithms , 2011, Swarm Evol. Comput..

[7]  Robert E. Smith,et al.  Linkage Learning in Estimation of Distribution Algorithms , 2008, Linkage in Evolutionary Computation.

[8]  Kalyanmoy Deb,et al.  RapidAccurate Optimization of Difficult Problems Using Fast Messy Genetic Algorithms , 1993, ICGA.

[9]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[10]  Martin Pelikan,et al.  Scalable Optimization via Probabilistic Modeling , 2006, Studies in Computational Intelligence.

[11]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[12]  Keith L. Downing,et al.  Introduction to Evolutionary Algorithms , 2006 .

[13]  David E. Goldberg,et al.  A Survey of Optimization by Building and Using Probabilistic Models , 2002, Comput. Optim. Appl..

[14]  Hillol Kargupta,et al.  The Gene Expression Messy Genetic Algorithm , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[15]  Prabhas Chongstitvatana,et al.  Chi-Square Matrix: An Approach for Building-Block Identification , 2004, ASIAN.

[16]  Jim Smith,et al.  An Adaptive Poly-Parental Recombination Strategy , 1995, Evolutionary Computing, AISB Workshop.

[17]  Prabhas Chongstitvatana,et al.  A quantitative approach for validating the building-block hypothesis , 2005, 2005 IEEE Congress on Evolutionary Computation.

[18]  A. F. Adams,et al.  The Survey , 2021, Dyslexia in Higher Education.

[19]  D. Goldberg,et al.  A Survey of Linkage Learning Techniques in Genetic and Evolutionary Algorithms , 2007 .

[20]  John W. Sheppard,et al.  The Royal Road Not Taken: A Re-examination of the Reasons for GA Failure on R1 , 2004, GECCO.

[21]  Meng-Hiot Lim,et al.  Linkage in Evolutionary Computation , 2008, Linkage in Evolutionary Computation.

[22]  Kalyanmoy Deb,et al.  Messy Genetic Algorithms: Motivation, Analysis, and First Results , 1989, Complex Syst..

[23]  A. E. Eiben,et al.  Genetic algorithms with multi-parent recombination , 1994, PPSN.

[24]  Ying-ping Chen,et al.  Extending the Scalability of Linkage Learning Genetic Algorithms: Theory and Practice , 2004 .

[25]  David E. Goldberg,et al.  Introducing Start Expression Genes to the Linkage Learning Genetic Algorithm , 2002, PPSN.

[26]  Martin Pelikan,et al.  Hierarchical Bayesian optimization algorithm: toward a new generation of evolutionary algorithms , 2010, SICE 2003 Annual Conference (IEEE Cat. No.03TH8734).

[27]  Gilbert Syswerda,et al.  Simulated Crossover in Genetic Algorithms , 1992, FOGA.

[28]  Prantosh Kumar Paul,et al.  Usability Engineering and HCI Based Information Systems in inside and outside of Home: A Contemporary Conceptual Study , 2014 .

[29]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[30]  Sébastien Vérel,et al.  Deceptiveness and neutrality the ND family of fitness landscapes , 2006, GECCO.

[31]  Thomas Stützle,et al.  Exploiting Fitness Distance Correlation of Set Covering Problems , 2002, EvoWorkshops.

[32]  Chuan-Kang Ting,et al.  The effects of supermajority on multi-parent crossover , 2007, 2007 IEEE Congress on Evolutionary Computation.

[33]  Philippe Collard,et al.  Fitness Distance Correlation, as statistical measure of Genetic Algorithm difficulty, revisited , 1998, ECAI.

[34]  Sakir Esnaf,et al.  A Discrete Constrained Optimization Using Genetic Algorithms for A Bookstore Layout , 2013, Int. J. Comput. Intell. Syst..

[35]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[36]  Reyadh Naoum,et al.  Fitness Function for Genetic Algorithm used in Intrusion Detection System , 2012 .

[37]  Marc Toussaint,et al.  The Structure of Evolutionary Exploration: On Crossover, Buildings Blocks, and Estimation-Of-Distribution Algorithms , 2002, GECCO.

[38]  Kesheng Wang,et al.  Application of genetic algorithms to robot kinematics calibration , 2009, Int. J. Syst. Sci..

[39]  N. Cheung,et al.  Application of a Genetic Algorithm to Optimize Purification in the Zone Refining Process , 2011 .

[40]  David E. Goldberg,et al.  Conquering hierarchical difficulty by explicit chunking: substructural chromosome compression , 2006, GECCO '06.

[41]  David E. Goldberg,et al.  Dependency Structure Matrix, Genetic Algorithms, and Effective Recombination , 2009, Evolutionary Computation.

[42]  Prabhas Chongstitvatana,et al.  Fragment as a Small Evidence of the Building Blocks Existence , 2010 .

[43]  A. E. Eiben,et al.  Multiparent recombination in evolutionary computing , 2002 .