Insights from present distribution of an alpine mammal Royle’s pika (Ochotona roylei) to predict future climate change impacts in the Himalaya

[1]  Elizabeth C. Kent,et al.  Global Climate , 2021, Bulletin of the American Meteorological Society.

[2]  P. Gleick CLIMATE CHANGE AND WATER , 2019, Earth under Fire.

[3]  Thiago F. Rangel,et al.  A parsimonious view of the parsimony principle in ecology and evolution , 2019, Ecography.

[4]  A. Townsend Peterson,et al.  kuenm: an R package for detailed development of ecological niche models using Maxent , 2019, PeerJ.

[5]  S. Bhattacharyya,et al.  Noninvasive sampling reveals population genetic structure in the Royle’s pika, Ochotona roylei, in the western Himalaya , 2018, Ecology and evolution.

[6]  S. Ahmad,et al.  Impacts of climate change on Capparis spinosa L. based on ecological niche modeling , 2018, PeerJ.

[7]  S. Bhattacharyya,et al.  A diet rich in C3 plants reveals the sensitivity of an alpine mammal to climate change , 2018, Molecular ecology.

[8]  E. Hadly,et al.  Evolution for extreme living: variation in mitochondrial cytochrome c oxidase genes correlated with elevation in pikas (genus Ochotona). , 2018, Integrative zoology.

[9]  N. Coops,et al.  How global climate change and regional disturbance can expand the invasion risk? Case study of Lantana camara invasion in the Himalaya , 2018, Biological Invasions.

[10]  Stephen E. Fick,et al.  WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas , 2017 .

[11]  G. Ren,et al.  Observed changes in surface air temperature and precipitation in the Hindu Kush Himalayan region over the last 100-plus years , 2017 .

[12]  Brett R. Scheffers,et al.  Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being , 2017, Science.

[13]  Stephen B. Stewart,et al.  The role of topography and the north Indian monsoon on mean monthly climate interpolation within the Himalayan Kingdom of Bhutan , 2017 .

[14]  J. Wiens Climate-Related Local Extinctions Are Already Widespread among Plant and Animal Species , 2016, PLoS biology.

[15]  C. Millar,et al.  Thermal Components of American Pika Habitat—How does a Small Lagomorph Encounter Climate? , 2016, Arctic, Antarctic, and Alpine Research.

[16]  C. Ray,et al.  Habitat availability and gene flow influence diverging local population trajectories under scenarios of climate change: a place‐based approach , 2016, Global change biology.

[17]  C. Ray,et al.  Of plants and pikas: evidence for a climate-mediated decline in forage and cache quality , 2015 .

[18]  G. Rawat,et al.  Presence of a small mammalian prey species in open habitat is dependent on refuge availability , 2015, Mammal Research.

[19]  A. Cameron,et al.  Expertly Validated Models and Phylogenetically-Controlled Analysis Suggests Responses to Climate Change Are Related to Species Traits in the Order Lagomorpha , 2015, PloS one.

[20]  J. Varner,et al.  Relating Sub-Surface Ice Features to Physiological Stress in a Climate Sensitive Mammal, the American Pika (Ochotona princeps) , 2015, PloS one.

[21]  G. Bala,et al.  Effects of large-scale deforestation on precipitation in the monsoon regions: Remote versus local effects , 2015, Proceedings of the National Academy of Sciences.

[22]  G. Rawat,et al.  Influence of microclimate on the activity of Royle's pika in the western Himalaya, India , 2014, Zoological Studies.

[23]  G. Rawat,et al.  Influence of Snow, Food, and Rock Cover on Royle's Pika Abundance in Western Himalaya , 2014 .

[24]  A. Lissovsky Taxonomic revision of pikas Ochotona (Lagomorpha, Mammalia) at the species level , 2014 .

[25]  R. Kyes,et al.  POPULATION AND COMPARATIVE BEHAVIOUR OF OCHOTONA ROYLEI AND OCHOTONA MACROTIS IN GOSAINKUNDA AREA, LANGTANG NATIONAL PARK, NEPAL , 2014 .

[26]  A. Kulkarni,et al.  Observed Changes in Himalayan Glaciers , 2014 .

[27]  Boris Schröder,et al.  The importance of correcting for sampling bias in MaxEnt species distribution models , 2013 .

[28]  G. Rawat,et al.  Forage selection by Royle's pika (Ochotona roylei) in the western Himalaya, India. , 2013, Zoology.

[29]  J. Andrew Royle,et al.  Presence‐only modelling using MAXENT: when can we trust the inferences? , 2013 .

[30]  A. Townsend Peterson,et al.  Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas , 2012 .

[31]  K. Boykin,et al.  Not‐so‐splendid isolation: modeling climate‐mediated range collapse of a montane mammal Ochotona princeps across numerous ecoregions , 2012 .

[32]  M. Araújo,et al.  Uses and misuses of bioclimatic envelope modeling. , 2012, Ecology.

[33]  Kamaljit S. Bawa,et al.  Widespread Climate Change in the Himalayas and Associated Changes in Local Ecosystems , 2012, PloS one.

[34]  Carrie A. Schloss,et al.  Dispersal will limit ability of mammals to track climate change in the Western Hemisphere , 2012, Proceedings of the National Academy of Sciences.

[35]  M. Clamp,et al.  Three Periods of Regulatory Innovation During Vertebrate Evolution , 2011, Science.

[36]  P. Mote,et al.  Contemporary climate change alters the pace and drivers of extinction , 2011 .

[37]  Dylan A. Shell,et al.  An evaluation of methods for modeling contact in multibody simulation , 2011, 2011 IEEE International Conference on Robotics and Automation.

[38]  E. Beever,et al.  Modeling contemporary range retraction in Great Basin pikas (Ochotona princeps) using data on microclimate and microhabitat , 2011 .

[39]  Emma C. Underwood,et al.  The Importance of Conserving Biodiversity Outside of Protected Areas in Mediterranean Ecosystems , 2011, PloS one.

[40]  Trevor Hastie,et al.  A statistical explanation of MaxEnt for ecologists , 2011 .

[41]  E. Beever,et al.  Distribution of American pikas in a low-elevation lava landscape: conservation implications from the range periphery , 2010 .

[42]  I. Hanski,et al.  Climate change and cyclic predator–prey population dynamics in the high Arctic , 2009 .

[43]  Arun Shrestha,et al.  The Melting Himalayas: Cascading Effects of Climate Change on Water, Biodiversity, and Livelihoods , 2009, Conservation biology : the journal of the Society for Conservation Biology.

[44]  C. Graham,et al.  Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know? , 2009 .

[45]  J. L. Parra,et al.  Impact of a Century of Climate Change on Small-Mammal Communities in Yosemite National Park, USA , 2008, Science.

[46]  A. Townsend Peterson,et al.  Rethinking receiver operating characteristic analysis applications in ecological niche modeling , 2008 .

[47]  Miroslav Dudík,et al.  Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation , 2008 .

[48]  E. Beever,et al.  American Pikas (Ochotona princeps) in Northwestern Nevada: A Newly Discovered Population at a Low-elevation Site , 2008 .

[49]  D. Inouye,et al.  Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. , 2008, Ecology.

[50]  W. Barthlott,et al.  Patterns of vascular plant diversity at continental to global scales , 2007 .

[51]  C. Körner The use of 'altitude' in ecological research. , 2007, Trends in ecology & evolution.

[52]  D. Hik,et al.  Demographic analysis of a declining pika Ochotona collaris population: linking survival to broad-scale climate patterns via spring snowmelt patterns. , 2007, The Journal of animal ecology.

[53]  S. Andelman,et al.  Protected area needs in a changing climate , 2007 .

[54]  Omri Allouche,et al.  Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS) , 2006 .

[55]  R. Pearson,et al.  Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar , 2006 .

[56]  A. Townsend Peterson,et al.  Novel methods improve prediction of species' distributions from occurrence data , 2006 .

[57]  Robert P. Anderson,et al.  Maximum entropy modeling of species geographic distributions , 2006 .

[58]  G. Walther,et al.  Trends in the upward shift of alpine plants , 2005 .

[59]  W. Thuiller,et al.  Predicting species distribution: offering more than simple habitat models. , 2005, Ecology letters.

[60]  M. Sykes,et al.  Climate change threats to plant diversity in Europe. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[61]  T. Dawson,et al.  Long-distance plant dispersal and habitat fragmentation: identifying conservation targets for spatial landscape planning under climate change , 2005 .

[62]  M. Araújo,et al.  An evaluation of methods for modelling species distributions , 2004 .

[63]  Erik A. Beever,et al.  PATTERNS OF APPARENT EXTIRPATION AMONG ISOLATED POPULATIONS OF PIKAS (OCHOTONA PRINCEPS) IN THE GREAT BASIN , 2003 .

[64]  N. Huntly,et al.  Habitat-specific demography: evidence for source-sink population structure in a mammal, the pika , 2003, Oecologia.

[65]  J. Andrew Royle,et al.  ESTIMATING SITE OCCUPANCY RATES WHEN DETECTION PROBABILITIES ARE LESS THAN ONE , 2002, Ecology.

[66]  Antoine Guisan,et al.  Predictive habitat distribution models in ecology , 2000 .

[67]  K. Armitage,et al.  Climate change is affecting altitudinal migrants and hibernating species. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[68]  Hughes,et al.  Biological consequences of global warming: is the signal already apparent? , 2000, Trends in ecology & evolution.

[69]  John H. Campbell,et al.  Biological response to climate change on a tropical mountain , 1999, Nature.

[70]  Diane Ebert-May,et al.  EFFECTS OF INTERANNUAL CLIMATE VARIATION ON ABOVEGROUND PHYTOMASS IN ALPINE VEGETATION , 1994 .

[71]  C. Wessman,et al.  Long-term studies of snow-vegetation interactions , 1993 .

[72]  T. Kawamichi Winter Behaviour of the Himalayan Pika, Ochotona roylei (With 9 Text-figures and 1 Table) , 1968 .

[73]  Harold A. Mooney,et al.  THE ECOLOGY OF ARCTIC AND ALPINE PLANTS , 1968 .

[74]  A. Peterson,et al.  Ecological and historical views of the diversification of Geositta miners (Aves: Furnariidae: Sclerurinae) , 2016, Journal of Ornithology.

[75]  N. H. Ravindranath,et al.  Multi-model climate change projections for India under representative concentration pathways , 2012 .

[76]  P. Mote,et al.  Testing alternative models of climate-mediated extirpations. , 2010, Ecological applications : a publication of the Ecological Society of America.

[77]  G. Rawat,et al.  Abundance of Royle’s pika ( Ochotona roylei ) along an altitudinal gradient in Uttarakhand, Western Himalaya , 2009 .

[78]  John P. Weyant,et al.  Report of 2.6 Versus 2.9 Watts/m2 RCPP Evaluation Panel , 2009 .

[79]  O. Edenhofer,et al.  Mitigation from a cross-sectoral perspective , 2007 .

[80]  Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/joc.1276 VERY HIGH RESOLUTION INTERPOLATED CLIMATE SURFACES FOR GLOBAL LAND AREAS , 2005 .

[81]  Jiawen Ren,et al.  Glacier variations and climate warming and drying in the central Himalayas , 2004 .

[82]  M. Caffee,et al.  A note on the extent of glaciation throughout the Himalaya during the global Last Glacial Maximum , 2002 .

[83]  M. Rogers,et al.  Snow leopard Panthera uncia predation of livestock: An assessment of local perceptions in the Annapurna Conservation Area, Nepal , 1994 .

[84]  Peter J. Marchand Life in the cold , 1987 .

[85]  T. Roberts The mammals of Pakistan , 1977 .

[86]  G. E. Hutchinson,et al.  The ecological theater and the evolutionary play , 1965 .