Thermo‐plasmonics: using metallic nanostructures as nano‐sources of heat

Recent years have seen a growing interest in using metal nanostructures to control temperature on the nanoscale. Under illumination at its plasmonic resonance, a metal nanoparticle features enhanced light absorption, turning it into an ideal nano-source of heat, remotely controllable using light. Such a powerful and flexible photothermal scheme is the basis of thermo-plasmonics. Here, the recent progress of this emerging and fast-growing field is reviewed. First, the physics of heat generation in metal nanoparticles is described, under both continuous and pulsed illumination. The second part is dedicated to numerical and experimental methods that have been developed to further understand and engineer plasmonic-assisted heating processes on the nanoscale. Finally, some of the most recent applications based on the heat generated by gold nanoparticles are surveyed, namely photothermal cancer therapy, nano-surgery, drug delivery, photothermal imaging, protein tracking, photoacoustic imaging, nano-chemistry and optofluidics.

[1]  A. Cavalleri,et al.  Nonlinear phononics as an ultrafast route to lattice control , 2011, 1101.1878.

[2]  M. Maillard,et al.  Electron-phonon scattering in metal clusters. , 2003, Physical review letters.

[3]  Peter Nordlander,et al.  Light-induced release of DNA from gold nanoparticles: nanoshells and nanorods. , 2011, Journal of the American Chemical Society.

[4]  Laser Pulse Heating of Spherical Metal Particles , 2011, 1106.2431.

[5]  G. Baffou,et al.  Mapping heat origin in plasmonic structures. , 2010, Physical review letters.

[6]  E. Sassaroli,et al.  Numerical investigation of heating of a gold nanoparticle and the surrounding microenvironment by nanosecond laser pulses for nanomedicine applications , 2009, Physics in medicine and biology.

[7]  Luke P. Lee,et al.  Optofluidic control using photothermal nanoparticles , 2006, Nature materials.

[8]  Jennifer Stanfield,et al.  Selective prostate cancer thermal ablation with laser activated gold nanoshells. , 2008, The Journal of urology.

[9]  Paul V. Ruijgrok,et al.  Probing the acoustic vibrations of single metal nanoparticles by ultrashort laser pulses , 2010 .

[10]  Brian P. Timko,et al.  Remotely Triggerable Drug Delivery Systems , 2010, Advanced materials.

[11]  Gerhard A Blab,et al.  Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals. , 2004, Physical review letters.

[12]  S. Emelianov,et al.  Silica-coated gold nanorods as photoacoustic signal nanoamplifiers. , 2011, Nano letters.

[13]  Lih Y. Lin,et al.  Localized surface plasmon assisted microfluidic mixing , 2008 .

[14]  P. Jain,et al.  Au nanoparticles target cancer , 2007 .

[15]  Viktor K. Pustovalov,et al.  Theoretical study of heating of spherical nanoparticle in media by short laser pulses , 2005 .

[16]  Sebastian Volz,et al.  Non-Fourier heat transport in metal-dielectric core-shell nanoparticles under ultrafast laser pulse excitation , 2008 .

[17]  E. Dujardin,et al.  Plasmonic nanoparticle networks for light and heat concentration. , 2012, ACS nano.

[18]  Hristina Petrova,et al.  Investigation of the properties of gold nanoparticles in aqueous solution at extremely high lattice temperatures , 2004 .

[19]  J. West,et al.  Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. , 2007, Nano letters.

[20]  Baowen Li,et al.  Thermal memory: a storage of phononic information. , 2008, Physical review letters.

[21]  A. Vogel,et al.  Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery. , 2008, Physical review letters.

[22]  Kishan Dholakia,et al.  Spatially optimized gene transfection by laser-induced breakdown of optically trapped nanoparticles , 2011 .

[23]  Vincent M Rotello,et al.  Gold nanoparticles in delivery applications. , 2008, Advanced drug delivery reviews.

[24]  Tom Pfeiffer,et al.  Single-step injection of gold nanoparticles through phospholipid membranes. , 2011, ACS nano.

[25]  Christian Dahmen,et al.  Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering , 2004 .

[26]  Suljo Linic,et al.  Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. , 2011, Nature chemistry.

[27]  Mostafa A. El-Sayed,et al.  Electron dynamics in gold and gold–silver alloy nanoparticles: The influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation , 1999 .

[28]  T. Niidome,et al.  Controlled-release system of single-stranded DNA triggered by the photothermal effect of gold nanorods and its in vivo application. , 2011, Bioorganic & medicinal chemistry.

[29]  C. Girard Near fields in nanostructures , 2005 .

[30]  Nastassja A. Lewinski,et al.  Nanoshell-mediated photothermal therapy improves survival in a murine glioma model , 2011, Journal of Neuro-Oncology.

[31]  Robert Langer,et al.  Targeted nanoparticles for cancer therapy , 2007 .

[32]  Wei Zhang,et al.  Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances , 2006, Nanoscale Research Letters.

[33]  Wei Qian,et al.  Ultrafast cooling of photoexcited electrons in gold nanoparticle-thiolated DNA conjugates involves the dissociation of the gold-thiol bond. , 2006, Journal of the American Chemical Society.

[34]  Mehmet Fatih Yanik,et al.  Neurosurgery: Functional regeneration after laser axotomy , 2004, Nature.

[35]  G. Bisker,et al.  Effect of Single Femtosecond Pulses on Gold Nanoparticles , 2011 .

[36]  K. Hamad-Schifferli,et al.  Effect of ligands on thermal dissipation from gold nanorods. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[37]  R. K. Harrison,et al.  Thermal analysis of gold nanorods heated with femtosecond laser pulses , 2008, Journal of physics D: Applied physics.

[38]  Mustafa Yorulmaz,et al.  Detection limits in photothermal microscopy , 2010 .

[39]  Jason H Hafner,et al.  Hot plasmonic interactions: a new look at the photothermal efficacy of gold nanoparticles. , 2010, Physical chemistry chemical physics : PCCP.

[40]  Jean-Jacques Greffet,et al.  Coherent spontaneous emission of light by thermal sources , 2004 .

[41]  Orla M. Wilson,et al.  Colloidal metal particles as probes of nanoscale thermal transport in fluids , 2002 .

[42]  Brahim Lounis,et al.  Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers , 2002, Science.

[43]  Jason H Hafner,et al.  Optically guided controlled release from liposomes with tunable plasmonic nanobubbles. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[44]  Qizhi Zhang,et al.  Gold nanoparticles as a contrast agent for in vivo tumor imaging with photoacoustic tomography , 2009, Nanotechnology.

[45]  R. Brayner,et al.  The toxicological impact of nanoparticles , 2008 .

[46]  L. Liz‐Marzán,et al.  Modelling the optical response of gold nanoparticles. , 2008, Chemical Society reviews.

[47]  Xunbin Wei,et al.  Selective cell targeting with light-absorbing microparticles and nanoparticles. , 2003, Biophysical journal.

[48]  Alexander O. Govorov,et al.  Generating heat with metal nanoparticles , 2007 .

[49]  Timo Laaksonen,et al.  Gold nanoparticles enable selective light-induced contents release from liposomes. , 2007, Journal of controlled release : official journal of the Controlled Release Society.

[50]  Kishan Dholakia,et al.  Extended organization of colloidal microparticles by surface plasmon polariton excitation , 2006 .

[51]  D. P. O'Neal,et al.  Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. , 2004, Cancer letters.

[52]  T. Thundat,et al.  Marangoni forces created by surface plasmon decay. , 2005, Optics letters.

[53]  J. West,et al.  Immunotargeted nanoshells for integrated cancer imaging and therapy. , 2005, Nano letters.

[54]  G. A. Blab,et al.  Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells. , 2006, Biophysical journal.

[55]  Herve Bercegol,et al.  Electron kinetics and emission for metal nanoparticles exposed to intense laser pulses , 2003 .

[56]  D. Choquet,et al.  Single metallic nanoparticle imaging for protein detection in cells , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Mostafa A. El-Sayed,et al.  Effect of the Lattice Crystallinity on the Electron−Phonon Relaxation Rates in Gold Nanoparticles , 2007 .

[58]  Hironobu Takahashi,et al.  Controlled release of plasmid DNA from gold nanorods induced by pulsed near-infrared light. , 2005, Chemical communications.

[59]  Thomas F. George,et al.  Ultrashort Laser Pulse Heating of Nanoparticles: Comparison of Theoretical Approaches , 2008 .

[60]  Romain Quidant,et al.  Thermoplasmonics modeling: A Green's function approach , 2010 .

[61]  M. El-Sayed,et al.  Laser-Induced Shape Changes of Colloidal Gold Nanorods Using Femtosecond and Nanosecond Laser Pulses , 2000 .

[62]  Paul Mulvaney,et al.  Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis. , 2003, Journal of the American Chemical Society.

[63]  B. Valeur,et al.  Molecular Fluorescence: Principles and Applications , 2001 .

[64]  Duane C. Karns,et al.  Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer , 2009 .

[65]  Gregory V. Hartland,et al.  Heat Dissipation for Au Particles in Aqueous Solution: Relaxation Time versus Size , 2002 .

[66]  Girard,et al.  Generalized Field Propagator for Electromagnetic Scattering and Light Confinement. , 1995, Physical review letters.

[67]  A. Vogel,et al.  Mechanisms of femtosecond laser nanosurgery of cells and tissues , 2005 .

[68]  D. Lapotko,et al.  Photothermal properties of gold nanoparticles under exposure to high optical energies , 2008, Nanotechnology.

[69]  Vincent M Rotello,et al.  Photoregulated release of caged anticancer drugs from gold nanoparticles. , 2009, Journal of the American Chemical Society.

[70]  Luis M Liz-Marzán,et al.  Shape control in gold nanoparticle synthesis. , 2008, Chemical Society reviews.

[71]  J. Barrat,et al.  Heat transfer from nanoparticles: A corresponding state analysis , 2009, Proceedings of the National Academy of Sciences.

[72]  Younan Xia,et al.  Gold nanocages covered by smart polymers for controlled release with near-infrared light , 2009, Nature materials.

[73]  Prashant K. Jain,et al.  Plasmonic photothermal therapy (PPTT) using gold nanoparticles , 2008, Lasers in Medical Science.

[74]  P. Beard Biomedical photoacoustic imaging , 2011, Interface Focus.

[75]  Younan Xia,et al.  Gold nanocages as photothermal transducers for cancer treatment. , 2010, Small.

[76]  Paul V. Braun,et al.  AuPd Metal Nanoparticles as Probes of Nanoscale Thermal Transport in Aqueous Solution , 2004 .

[77]  Jean-Jacques Greffet,et al.  Thermal radiation scanning tunnelling microscopy , 2006, Nature.

[78]  Gerhard A Blab,et al.  Label-free optical imaging of mitochondria in live cells. , 2007, Optics express.

[79]  J. Aizpurua,et al.  Acousto-plasmonic hot spots in metallic nano-objects. , 2009, Nano letters.

[80]  Romain Quidant,et al.  Plasmon-assisted optofluidics. , 2011, ACS nano.

[81]  C. Murphy,et al.  Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. , 2005, Small.

[82]  Dmitri O. Lapotko,et al.  Pulsed photothermal heating of the media during bubble generation around gold nanoparticles , 2009 .

[83]  M. Broyer,et al.  Direct measurement of the single-metal-cluster optical absorption. , 2004, Physical review letters.

[84]  Valery V. Tuchin,et al.  Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters , 2006 .

[85]  Serge Monneret,et al.  Thermal imaging of nanostructures by quantitative optical phase analysis. , 2012, ACS nano.

[86]  Thomas Taubner,et al.  Optical antenna thermal emitters , 2009 .

[87]  Feng Gao,et al.  In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages. , 2010, ACS nano.

[88]  A. Henglein,et al.  Electron-phonon coupling dynamics in very small (between 2 and 8 nm diameter) Au nanoparticles , 2000 .

[89]  François Gallaire,et al.  Thermocapillary valve for droplet production and sorting. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[90]  F. G. D. Abajo,et al.  Retarded field calculation of electron energy loss in inhomogeneous dielectrics , 2002 .

[91]  V. Rotello,et al.  Drug and gene delivery using gold nanoparticles , 2007 .

[92]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[93]  Hervé Rigneault,et al.  Femtosecond-pulsed optical heating of gold nanoparticles , 2011 .

[94]  Nuo Yang,et al.  Carbon nanocone: A promising thermal rectifier , 2008 .

[95]  M W Berns,et al.  Laser microsurgery in cell and developmental biology. , 1981, Science.

[96]  Stanislav Emelianov,et al.  Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer. , 2009, Nano letters.

[97]  M. El-Sayed,et al.  Laser photothermal melting and fragmentation of gold nanorods: Energy and laser pulse-width dependence , 1999 .

[98]  Erik C. Dreaden,et al.  Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. , 2008, Cancer letters.

[99]  Jutaek Nam,et al.  pH-Induced aggregation of gold nanoparticles for photothermal cancer therapy. , 2009, Journal of the American Chemical Society.

[100]  Rebekah A Drezek,et al.  Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles. , 2010, ACS nano.

[101]  Naomi J. Halas,et al.  Light-induced release of DNA from plasmon-resonant nanoparticles: Towards light-controlled gene therapy , 2009 .

[102]  Sarit K. Das,et al.  Probing the Gold Nanorod−Ligand−Solvent Interface by Plasmonic Absorption and Thermal Decay , 2008 .

[103]  Elodie Boisselier,et al.  Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. , 2009, Chemical Society reviews.

[104]  Konstantin Sokolov,et al.  Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques. , 2009, Nano letters.

[105]  Romain Quidant,et al.  Heat generation in plasmonic nanostructures: Influence of morphology , 2009 .

[106]  K. Hamad-Schifferli,et al.  Selective release of multiple DNA oligonucleotides from gold nanorods. , 2009, ACS nano.

[107]  M. Romanowski,et al.  Wavelength‐Selective Light‐Induced Release from Plasmon Resonant Liposomes , 2011, Advanced functional materials.

[108]  Jordan A. Katine,et al.  Magnetic recording at 1.5 Pb m −2 using an integrated plasmonic antenna , 2010 .

[109]  A. Vogel,et al.  Mechanisms of pulsed laser ablation of biological tissues. , 2003, Chemical reviews.

[110]  Nikolai G. Khlebtsov,et al.  Optical properties and biomedical applications of plasmonic nanoparticles , 2010 .

[111]  V. Sée,et al.  Gold nanoparticles delivery in mammalian live cells: a critical review , 2010, Nano reviews.

[112]  F. Kulzer,et al.  Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy. , 2009, Optics express.

[113]  Kazuyuki Hirao,et al.  Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system , 1998 .

[114]  Massoud Motamedi,et al.  Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography. , 2004, Molecular imaging and biology : MIB : the official publication of the Academy of Molecular Imaging.

[115]  Dmitri Lapotko,et al.  Optical excitation and detection of vapor bubbles around plasmonic nanoparticles. , 2009, Optics express.

[116]  Garnett W. Bryant,et al.  Metal‐nanoparticle plasmonics , 2008 .

[117]  Leonid V. Zhigilei,et al.  Numerical modeling of short pulse laser interaction with Au nanoparticle surrounded by water , 2007 .

[118]  Luke P. Lee,et al.  Remote optical switch for localized and selective control of gene interference. , 2009, Nano letters.

[119]  G. Plessen,et al.  Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water. , 2006, The Journal of chemical physics.

[120]  Pawel Keblinski,et al.  Critical heat flux around strongly heated nanoparticles. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[121]  Paul V. Ruijgrok,et al.  Room-Temperature Detection of a Single Molecule’s Absorption by Photothermal Contrast , 2010, Science.

[122]  Naomi J Halas,et al.  Nanoshell-enabled photothermal cancer therapy: impending clinical impact. , 2008, Accounts of chemical research.

[123]  Jianfang Wang,et al.  Understanding the photothermal conversion efficiency of gold nanocrystals. , 2010, Small.

[124]  R. Stafford,et al.  Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[125]  Massoud Motamedi,et al.  High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system. , 2007, Nano letters.

[126]  A. Govorov,et al.  Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions. , 2009, Nano letters.

[127]  R Rodríguez-Oliveros,et al.  Gold nanostars as thermoplasmonic nanoparticles for optical heating. , 2012, Optics express.

[128]  Alfons G. Hoekstra,et al.  The discrete dipole approximation: an overview and recent developments , 2007 .

[129]  S. Curley,et al.  Targeted hyperthermia using metal nanoparticles. , 2010, Advanced drug delivery reviews.

[130]  Romain Quidant,et al.  Nanoscale control of optical heating in complex plasmonic systems. , 2010, ACS nano.

[131]  A. Henglein,et al.  Size dependent properties of Au particles: Coherent excitation and dephasing of acoustic vibrational modes , 1999 .