Dot Pattern Processing Using Voronoi Neighborhoods

A sound notion of the neighborhood of a point is essential for analyzing dot patterns. The past work in this direction has concentrated on identifying pairs of points that are neighbors. Examples of such methods include those based on a fixed radius, k-nearest neighbors, minimal spanning tree, relative neighborhood graph, and the Gabriel graph. This correspondence considers the use of the region enclosed by a point's Voronoi polygon as its neighborhood. It is argued that the Voronoi polygons possess intuitively appealing characteristics, as would be expected from the neighborhood of a point. Geometrical characteristics of the Voronoi neighborhood are used as features in dot pattern processing. Procedures for segmentation, matching, and perceptual border extraction using the Voronoi neighborhood are outlined. Extensions of the Voronoi definition to other domains are discussed.

[1]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .

[2]  A. H. Thiessen PRECIPITATION AVERAGES FOR LARGE AREAS , 1911 .

[3]  Peter H. A. Sneath,et al.  A Method for Curve Seeking from Scattered Points , 1966, Comput. J..

[4]  Charles T. Zahn,et al.  Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters , 1971, IEEE Transactions on Computers.

[5]  Robin Sibson,et al.  The Dirichiet Tessellation as an Aid in Data Analysis , 1980 .

[6]  J. Gower,et al.  Minimum Spanning Trees and Single Linkage Cluster Analysis , 1969 .

[7]  A. Rosenfeld,et al.  Some Experiments in Point Pattern Matching , 1978 .

[8]  Larry S. Davis,et al.  Shape Matching Using Relaxation Techniques , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  J. F. O'Callaghan Human Perception of Homogeneous Dot Patterns , 1974 .

[10]  Laveen N. Kanal,et al.  Recognition of spatial point patterns , 1983, Pattern Recognit..

[11]  Charles T. Zahn,et al.  An Algorithm for Noisy Template Matching , 1974, IFIP Congress.

[12]  Keinosuke Fukunaga,et al.  A Criterion and an Algorithm for Grouping Data , 1970, IEEE Transactions on Computers.

[13]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[14]  Israel Gitman A parameter-free clustering model , 1972, Pattern Recognit..

[15]  Steven W. Zucker,et al.  Region growing: Childhood and adolescence* , 1976 .

[16]  Godfried T. Toussaint,et al.  The relative neighbourhood graph of a finite planar set , 1980, Pattern Recognit..

[17]  Godfried T. Toussaint,et al.  Some new algorithms and software implementation methods for pattern recognition research , 1979, COMPSAC.

[18]  John F. O'Callaghan,et al.  Computing the perceptual boundaries of dot patterns , 1974, Comput. Graph. Image Process..

[19]  Geoffrey H. Ball,et al.  Data analysis in the social sciences: what about the details? , 1965, AFIPS '65 (Fall, part I).

[20]  John F. O'Callaghan,et al.  An Alternative Definition for "Neighborhood of a Point" , 1975, IEEE Transactions on Computers.

[21]  J. C. Simon,et al.  A method of comparing two patterns independent of possible transformations and small distortions , 1972, Pattern Recognit..

[22]  Keinosuke Fukunaga,et al.  A Nonparametric Valley-Seeking Technique for Cluster Analysis , 1971, IEEE Transactions on Computers.

[23]  C. Board,et al.  Display and analysis of spatial data , 1975 .

[24]  S. C. Johnson Hierarchical clustering schemes , 1967, Psychometrika.

[25]  Der-Tsai Lee Proximity and reachability in the plane. , 1978 .

[26]  Flavio R. Dias Velasco A method for the analysis of Gaussian-like clusters , 1980, Pattern Recognit..

[27]  J. Besag Statistical Analysis of Non-Lattice Data , 1975 .

[28]  Azriel Rosenfeld,et al.  Point pattern matching by relaxation , 1980, Pattern Recognit..

[29]  L. Hubert Some applications of graph theory to clustering , 1974 .

[30]  Godfried T. Toussaint,et al.  PATTERN RECOGNITION AND GEOMETRICAL COMPLEXITY. , 1980 .

[31]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[32]  Azriel Rosenfeld,et al.  Scene Labeling by Relaxation Operations , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[33]  Edward A. Patrick,et al.  Interactive Use of Problem Knowledge for Clustering and Decision Making , 1971, IEEE Transactions on Computers.

[34]  R. Hummel,et al.  Toward a low-level description of dot clusters: Labeling edge, interior, and noise points , 1979 .

[35]  William B. Thompson,et al.  Disparity Analysis of Images , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Ray A. Jarvis,et al.  Clustering Using a Similarity Measure Based on Shared Near Neighbors , 1973, IEEE Transactions on Computers.