The function cascade synchronization method and applications

Abstract In this paper, a new function cascade synchronization method of chaos system is proposed to achieve generalized projective synchronization for chaotic systems. Based on Laypunov stability, the proposed synchronization technique is applied to three famous chaotic systems: the unified chaotic system, Liu system and Rossler system, which can make the states of two identical chaotic systems asymptotically synchronized by choosing different special suitable error functions. Numerical simulations are presented to show the effectiveness.

[1]  Jun-an Lu,et al.  Synchronization of a unified chaotic system and the application in secure communication , 2002 .

[2]  H. Abarbanel,et al.  Generalized synchronization of chaos: The auxiliary system approach. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[3]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[4]  Daizhan Cheng,et al.  Bridge the Gap between the Lorenz System and the Chen System , 2002, Int. J. Bifurc. Chaos.

[5]  C. Sparrow The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors , 1982 .

[6]  Yong Chen,et al.  FUNCTION PROJECTIVE SYNCHRONIZATION BETWEEN TWO IDENTICAL CHAOTIC SYSTEMS , 2007 .

[7]  Zhi-Hong Guan,et al.  Feedback and adaptive control for the synchronization of Chen system via a single variable , 2003 .

[8]  Jiong Ruan,et al.  An improved method in synchronization of chaotic svstems , 1998 .

[9]  Jianping Yan,et al.  Generalized projective synchronization of a unified chaotic system , 2005 .

[10]  Rong Zhang,et al.  Full state hybrid projective synchronization in continuous-time chaotic (hyperchaotic) systems , 2008 .

[11]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[12]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[13]  Jianping Yan,et al.  Generalized projective synchronization of chaos: The cascade synchronization approach , 2006 .

[14]  H. Agiza,et al.  Adaptive synchronization of Lü system with uncertain parameters , 2004 .

[15]  Jun-an Lu,et al.  Adaptive feedback synchronization of a unified chaotic system , 2004 .

[16]  Güémez,et al.  Modified method for synchronizing and cascading chaotic systems. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  O. Rössler An equation for continuous chaos , 1976 .

[18]  Jiong Ruan,et al.  Synchronization of chaotic systems by feedback , 1999 .

[19]  Jian-ping Yan,et al.  Generalized projective synchronization for the chaotic Lorenz system and the chaotic Chen system , 2006 .

[20]  Chongxin Liu,et al.  A new chaotic attractor , 2004 .

[21]  Daolin Xu,et al.  Nonlinear observer control for full-state projective synchronization in chaotic continuous-time systems , 2005 .

[22]  Jinhu Lu,et al.  Chaos synchronization between linearly coupled chaotic systems , 2002 .

[23]  S. Bowong Adaptive synchronization between two different chaotic dynamical systems , 2007 .

[24]  Ju H. Park Adaptive Synchronization of a Unified Chaotic System with an Uncertain Parameter , 2005 .

[25]  Louis M. Pecora,et al.  Cascading synchronized chaotic systems , 1993 .

[26]  Louis M. Pecora,et al.  Synchronizing chaotic circuits , 1991 .

[27]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[28]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .