High strain (0.4%) Bi(Mg 2/3 Nb 1/3 )O 3 ‐BaTiO 3 ‐BiFeO 3 lead‐free piezoelectric ceramics and multilayers

The relationship between the piezoelectric properties and the structure/microstructure for 0.05Bi(Mg2/3Nb1/3)O3-(0.95-x)BaTiO3-xBiFeO3 (BBFT, x = 0.55, 0.60, 0.63, 0.65, 0.70, and 0.75) ceramics has been investigated. Scanning electron microscopy revealed a homogeneous microstructure for x < 0.75 but there was evidence of a core-shell cation distribution for x = 0.75 which could be suppressed in part through quenching from the sintering temperature. X-ray diffraction (XRD) suggested a gradual structural transition from pseudocubic to rhombohedral for 0.63<x<0.70, characterised by the coexistence of phases. The temperature dependence of relative permittivity, polarisation-electric field hysteresis loops, bipolar strain-electric field curves revealed that BBFT transformed from relaxor-like to ferroelectric behaviour with an increase in x, consistent with changes in the phase assemblage and domain structure. The largest strain was 0.41 % for x = 0.63 at 10 kV/mm. The largest effective piezoelectric coefficient (d33*) was 544 pm/V for x = 0.63 at 5 kV/mm but the largest Berlincourt d33 (148 pC/N) was obtained for x = 0.70. We propose that d33* is optimised at the point of crossover from relaxor to ferroelectric which facilitates a macroscopic field induced transition to a ferroelectric state but that d33 is optimised in the ferroelectric, rhombohedral phase. Unipolar strain was measured as a function of temperature for x = 0.63 with strains of 0.30% achieved at 175oC, accompanied by a significant decrease in hysteresis with respect to room temperature measurements. The potential for BBFT compositions to be used as high strain actuators is demonstrated by the fabrication of a prototype multilayer which achieved 3 m displacement at 150 oC.

[1]  Chem. , 2020, Catalysis from A to Z.

[2]  Rudolf Käser Naturwissenschaften , 2020, Dürrenmatt-Handbuch.

[3]  李基炯,et al.  § 14 , 1982, Fichte.

[4]  J. Yvonnet Piezoelectricity , 2019, Computational Homogenization of Heterogeneous Materials with Finite Elements.

[5]  J. Zhai,et al.  Electric-field-temperature phase diagram and electromechanical properties in lead-free (Na0.5Bi0.5)TiO3-based incipient piezoelectric ceramics , 2017 .

[6]  I. Reaney,et al.  Temperature dependent, large electromechanical strain in Nd-doped BiFeO3-BaTiO3 lead-free ceramics , 2017 .

[7]  Yoshitaka Ehara,et al.  Phase transformation induced by electric field and mechanical stress in Mn-doped (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3 ceramics , 2016 .

[8]  Adolf Acquaye,et al.  Integrated hybrid life cycle assessment and supply chain environmental profile evaluations of lead-based (lead zirconate titanate) versus lead-free (potassium sodium niobate) piezoelectric ceramics , 2016 .

[9]  D. Sinclair,et al.  Temperature stable and fatigue resistant lead-free ceramics for actuators , 2016 .

[10]  Juan Du,et al.  Dielectric, ferroelectric and field-induced strain response of lead-free (Fe, Sb)-modified (Bi0.5Na0.5)0.935Ba0.065TiO3 ceramics , 2016 .

[11]  Hanxing Liu,et al.  Manganese‐Doped BiFeO3–BaTiO3 High‐Temperature Piezoelectric Ceramics: Phase Structures and Defect Mechanism , 2016 .

[12]  Boping Zhang,et al.  Enhanced piezoelectric properties of Bi(Mg1/2Ti1/2)O3 modified BiFeO3–BaTiO3 ceramics near the morphotropic phase boundary , 2016 .

[13]  S. Dong,et al.  Full set of material constants of (Na0.5K0.5)NbO3–BaZrO3–(Bi0.5Li0.5)TiO3 lead-free piezoelectric ceramics at the morphotropic phase boundary , 2016 .

[14]  Guohua Chen,et al.  Effect of poling on polarization alignment, dielectric behavior, and piezoelectricity development in polycrystalline BiFeO3–BaTiO3 ceramics , 2016 .

[15]  Tae Kwon Song,et al.  High‐Performance Lead‐Free Piezoceramics with High Curie Temperatures , 2015, Advanced materials.

[16]  Takayuki Watanabe,et al.  Effects of poling termination and aging process on piezoelectric properties of Mn-doped BaTi0.96Zr0.04O3 ceramics , 2015 .

[17]  K. Lam,et al.  Phase transition, piezoelectric, and multiferroic properties of La(Co0.5Mn0.5)O3‐modified BiFeO3–BaTiO3 lead‐free ceramics , 2015 .

[18]  T. Stevenson,et al.  Piezoelectric materials for high temperature transducers and actuators , 2015, Journal of Materials Science: Materials in Electronics.

[19]  W. Jo,et al.  Temperature Stability of Lead‐Free Niobate Piezoceramics with Engineered Morphotropic Phase Boundary , 2015 .

[20]  Kyle G. Webber,et al.  Transferring lead-free piezoelectric ceramics into application , 2015 .

[21]  K. Lam,et al.  Critical roles of Mn-ions in enhancing the insulation, piezoelectricity and multiferroicity of BiFeO3-based lead-free high temperature ceramics , 2015 .

[22]  F. Xiao,et al.  Improved catalytic activity in methanol electro-oxidation over the nickel form of aluminum-rich beta-SDS zeolite modified electrode , 2015 .

[23]  Dunmin Lin,et al.  Structure, ferroelectric, ferromagnetic, and piezoelectric properties of Al‐modified BiFeO3–BaTiO3 multiferroic ceramics , 2015 .

[24]  R. Martinez Lopez,et al.  Journal of the European Ceramic Society , 2015 .

[25]  Xiaoyong Wei,et al.  Microstructure and ferroelectric properties of Nb2O5-modified BiFeO3-BaTiO3 lead-free ceramics for energy storage , 2014 .

[26]  K. Lam,et al.  Enhanced ferroelectricity, piezoelectricity, and ferromagnetism in Nd-modified BiFeO3-BaTiO3 lead-free ceramics , 2014 .

[27]  Jianguo Chen,et al.  Enhanced thermal stability of lead-free high temperature 0.75BiFeO3–0.25BaTiO3 ceramics with excess Bi content , 2014 .

[28]  A. Senyshyn,et al.  Magnetic transitions and site-disordered induced weak ferromagnetism in (1-x)BiFeO3-xBaTiO3 , 2014 .

[29]  Yongxing Wei,et al.  Dielectric, Ferroelectric, and Piezoelectric Properties of BiFeO3–BaTiO3 Ceramics , 2013 .

[30]  Huabin Yang,et al.  Bi(Zn1/2Ti1/2)O3 modified BiFeO3–BaTiO3 lead-free piezoelectric ceramics with high temperature stability , 2013 .

[31]  Changrong Zhou,et al.  Structure, electrical properties of Bi(Fe, Co)O3–BaTiO3 piezoelectric ceramics with improved Curie temperature , 2013 .

[32]  Dielectric, Ferroelectric, and Piezoelectric Properties of Bi(Ni1/2Ti1/2)O3‐Modified BiFeO3–BaTiO3 Ceramics with High Curie Temperature , 2012 .

[33]  Chengliang Lu,et al.  Enhanced multiferroic properties of BiFeO3 ceramics by Ba and high-valence Nb co-doping , 2012 .

[34]  J. Eiras,et al.  Ferroic states and phase coexistence in BiFeO3-BaTiO3 solid solutions , 2012 .

[35]  Takayuki Watanabe,et al.  Microstructure of BaTiO3–Bi(Mg1/2Ti1/2)O3–BiFeO3 Piezoelectric Ceramics , 2012 .

[36]  Huabin Yang,et al.  Remarkably high-temperature stable piezoelectric properties of Bi(Mg0.5Ti0.5)O3 modified BiFeO3–BaTiO3 ceramics , 2012 .

[37]  I. Reaney,et al.  Electromechanical strain in Bi(Zn1/2Ti1/2)O3–(Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3 solid solutions , 2012 .

[38]  Takayuki Watanabe,et al.  Structural, Dielectric, and Piezoelectric Properties of Mn-Doped BaTiO3–Bi(Mg1/2Ti1/2)O3–BiFeO3Ceramics , 2011 .

[39]  Jacob L. Jones,et al.  Origins of Electro‐Mechanical Coupling in Polycrystalline Ferroelectrics During Subcoercive Electrical Loading , 2011 .

[40]  X. Ren,et al.  Large piezoelectric effect in Pb-free ceramics. , 2009, Physical review letters.

[41]  Richard E. Eitel,et al.  Dielectric and Piezoelectric Properties in Mn‐Modified (1−x)BiFeO3–xBaTiO3 Ceramics , 2009 .

[42]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[43]  A. Safari,et al.  Piezoelectric and Acoustic Materials for Transducer Applications , 2008 .

[44]  A. Safari,et al.  Origin of high piezoelectric activity in ferroelectric (K0.44Na0.52Li0.04)−(Nb0.84Ta0.1Sb0.06)O3 ceramics , 2008 .

[45]  Wook Jo,et al.  Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3. I. Structure and room temperature properties , 2008 .

[46]  Helmut Ehrenberg,et al.  Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3. II. Temperature dependent properties , 2008 .

[47]  Helmut Ehrenberg,et al.  Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system , 2007 .

[48]  N. Setter,et al.  Temperature stability of the piezoelectric properties of Li-modified KNN ceramics , 2007 .

[49]  Dragan Damjanovic,et al.  Electric-field-, temperature-, and stress-induced phase transitions in relaxor ferroelectric single crystals , 2006 .

[50]  R. Young,et al.  The Rietveld method , 2006 .

[51]  Seong‐Hyeon Hong,et al.  Effects of Nb-doping on electric and magnetic properties in multi-ferroic BiFeO3 ceramics , 2005 .

[52]  Matthew J. Davis,et al.  Electric-field-induced orthorhombic to rhombohedral phase transition in [111]C-oriented 0.92Pb(Zn1∕3Nb2∕3)O3−0.08PbTiO3 , 2005 .

[53]  Yasuyoshi Saito,et al.  Lead-free piezoceramics , 2004, Nature.

[54]  G. Burr,et al.  Journal of Applied Physics , 2004 .

[55]  Roland Müller-Fiedler,et al.  Reliability aspects of microsensors and micromechatronic actuators for automotive applications , 2003, Microelectron. Reliab..

[56]  Kevin M. Knowles,et al.  Electron Microscopy and Analysis , 2001 .

[57]  Andrew G. Glen,et al.  APPL , 2001 .

[58]  Mahesh Kumar,et al.  Structure property relations in BiFeO3/BaTiO3 solid solutions , 2000 .

[59]  Dragan Damjanovic,et al.  FERROELECTRIC, DIELECTRIC AND PIEZOELECTRIC PROPERTIES OF FERROELECTRIC THIN FILMS AND CERAMICS , 1998 .

[60]  Y. Fotinich,et al.  Influence of temperature on the electromechanical and fatigue behavior of piezoelectric ceramics , 1998 .

[61]  G. Lockitch Perspectives on lead toxicity. , 1993, Clinical biochemistry.

[62]  R. Goyer,et al.  Lead toxicity: current concerns. , 1993, Environmental health perspectives.

[63]  A. Kingon,et al.  International Symposium on Applications of Ferroelectrics , 1993 .

[64]  一ノ瀬晃,et al.  (Bi 1/2 Na 1/2 )TiO 3 系セラミックスの電気的,機械的特性 , 1991 .

[65]  Qiming Zhang,et al.  Large displacement transducers based on electric field forced phase transitions in the tetragonal (Pb0.97La0.02) (Ti,Zr,Sn)O3 family of ceramics , 1989 .

[66]  David H. Templeton,et al.  Crystal structures: A working approach , 1973 .

[67]  K. H. Hardtl,et al.  PbO vapour pressure in the Pb(Ti1−x)O3 system , 1969 .

[68]  K. W. H. STEVENS,et al.  Physics of the Solid State , 1957, Nature.

[69]  R. Roth,et al.  Piezoelectric Properties of Lead Zirconate‐Lead Titanate Solid‐Solution Ceramics , 1954 .

[70]  G. Shirane,et al.  Phase Transitions in Solid Solutions of PbZrO 3 and PbTiO 3 (II) X-ray Study , 1952 .

[71]  B. Damien Annales de chimie et de physique , 1888 .