Heterogeneity preserving upscaling for heat transport in fractured geothermal reservoirs

In simulation of fluid injection in fractured geothermal reservoirs, the characteristics of the physical processes are severely affected by the local occurence of connected fractures. To resolve these structurally dominated processes, there is a need to develop discretization strategies that also limit computational effort. In this paper, we present an upscaling methodology for geothermal heat transport with fractures represented explicitly in the computational grid. The heat transport is modeled by an advection-conduction equation for the temperature, and solved on a highly irregular coarse grid that preserves the fracture heterogeneity. The upscaling is based on different strategies for the advective term and the conductive term. The coarse scale advective term is constructed from sums of fine scale fluxes, whereas the coarse scale conductive term is constructed based on numerically computed basis functions. The method naturally incorporates the coupling between solution variables in the matrix and in the fractures, respectively, via the discretization. In this way, explicit transfer terms that couple fracture and matrix solution variables are avoided. Numerical results show that the upscaling methodology performs well, in particular for large upscaling ratios, and that it is applicable also to highly complex fracture networks.

[1]  Eirik Keilegavlen,et al.  A finite-volume discretization for deformation of fractured media , 2018, Computational Geosciences.

[2]  Louis J. Durlofsky,et al.  A general gridding, discretization, and coarsening methodology for modeling flow in porous formations with discrete geological features , 2016 .

[3]  K. Watanabe,et al.  Fractal geometry characterization of geothermal reservoir fracture networks , 1995 .

[4]  K. Pruess Heat transfer in fractured geothermal reservoirs with boiling , 1983 .

[5]  L. Durlofsky,et al.  An Efficient Discrete-Fracture Model Applicable for General-Purpose Reservoir Simulators , 2004 .

[6]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[7]  Annette Silberhorn-Hemminger Modellierung von Kluftaquifersystemen: Geostatistische Analyse und deterministisch-stochastische Kluftgenerierung , 2002 .

[8]  G. I. Barenblatt,et al.  Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata] , 1960 .

[9]  Vera Louise Hauge,et al.  Multiscale Methods and Flow-based Gridding for Flow and Transport In Porous Media , 2010 .

[10]  I. Aavatsmark,et al.  An Introduction to Multipoint Flux Approximations for Quadrilateral Grids , 2002 .

[11]  JAN MARTIN NORDBOTTEN,et al.  Stable Cell-Centered Finite Volume Discretization for Biot Equations , 2015, SIAM J. Numer. Anal..

[12]  Vincent Martin,et al.  Modeling Fractures and Barriers as Interfaces for Flow in Porous Media , 2005, SIAM J. Sci. Comput..

[13]  C. D'Angelo,et al.  A mixed finite element method for Darcy flow in fractured porous media with non-matching grids , 2012 .

[14]  T. Narasimhan,et al.  On fluid reserves and the production of superheated steam from fractured, vapor‐dominated geothermal reservoirs , 1982 .

[15]  Jostein R. Natvig,et al.  Flow-based coarsening for multiscale simulation of transport in porous media , 2012, Computational Geosciences.

[16]  Brian Berkowitz,et al.  Continuum models for contaminant transport in fractured porous formations , 1988 .

[17]  Olav Møyner,et al.  A multiscale restriction-smoothed basis method for high contrast porous media represented on unstructured grids , 2016, J. Comput. Phys..

[18]  C. C. Barton Fractal Analysis of Scaling and Spatial Clustering of Fractures , 1995 .

[19]  Magne S. Espedal,et al.  Meshing of domains with complex internal geometries , 2006, Numer. Linear Algebra Appl..

[20]  Ivan G. Graham,et al.  Energy Minimizing Coarse Spaces for Two-level Schwarz Methods for Multiscale Pdes , 2008 .

[21]  Louis J. Durlofsky,et al.  An Efficient Discrete Fracture Model Applicable for General Purpose Reservoir Simulators , 2003 .

[22]  Hadi Hajibeygi,et al.  Algebraic Multiscale Solver for Flow in Heterogeneous Fractured Porous Media , 2015, ANSS 2015.

[23]  Pierre M. Adler,et al.  Fractures and Fracture Networks , 1999 .

[24]  T. N. Narasimhan,et al.  A PRACTICAL METHOD FOR MODELING FLUID AND HEAT FLOW IN FRACTURED POROUS MEDIA , 1985 .

[25]  D. Elsworth,et al.  Multiporosity/multipermeability approach to the simulation of naturally fractured reservoirs , 1993 .

[26]  Kassem Mustapha,et al.  A New Approach to Simulating Flow in Discrete Fracture Networks with an Optimized Mesh , 2007, SIAM J. Sci. Comput..

[27]  J. Nordbotten,et al.  On the relationship between the multiscale finite-volume method and domain decomposition preconditioners , 2008 .

[28]  Patrick Jenny,et al.  Iterative multiscale finite-volume method , 2008, J. Comput. Phys..

[29]  Stein Krogstad,et al.  Open-source MATLAB implementation of consistent discretisations on complex grids , 2012, Computational Geosciences.

[30]  Kazuo Hayashi,et al.  Numerical models of HDR geothermal reservoirs—a review of current thinking and progress , 1999 .

[31]  J. E. Warren,et al.  The Behavior of Naturally Fractured Reservoirs , 1963 .

[32]  L. Durlofsky,et al.  Generation of coarse‐scale continuum flow models from detailed fracture characterizations , 2006 .

[33]  Eirik Keilegavlen,et al.  Physics‐based preconditioners for flow in fractured porous media , 2014 .

[34]  Marian Brezina,et al.  Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems , 2005, Computing.

[35]  N. Odling,et al.  Scaling of fracture systems in geological media , 2001 .

[36]  J. Nordbotten Cell‐centered finite volume discretizations for deformable porous media , 2014 .

[37]  Hui Zhou,et al.  Operator-Based Multiscale Method for Compressible Flow , 2006 .

[38]  Jan M. Nordbotten,et al.  An efficient multi-point flux approximation method for Discrete Fracture-Matrix simulations , 2012, J. Comput. Phys..

[39]  P. Cheng,et al.  Heat Transfer in Geothermal Systems , 1979 .

[40]  Emmanuel Ledoux,et al.  Modeling fracture flow with a stochastic discrete fracture network: Calibration and validation: 2. The transport model , 1990 .

[41]  J. Nordbotten,et al.  Inexact linear solvers for control volume discretizations in porous media , 2015, Computational Geosciences.

[42]  Patrick Jenny,et al.  A hierarchical fracture model for the iterative multiscale finite volume method , 2011, J. Comput. Phys..

[43]  Yalchin Efendiev,et al.  An Adaptive Multiscale Method for Simulation of Fluid Flow in Heterogeneous Porous Media , 2006, Multiscale Model. Simul..

[44]  Karsten Pruess,et al.  A New Semi-Analytical Method for Numerical Simulation of Fluid and Heat Flow in Fractured Reservoirs , 1993, SPE Advanced Technology Series.

[45]  O. Iliev,et al.  Multiscale finite element coarse spaces for the application to linear elasticity , 2013 .

[46]  J. Bresee Geothermal energy in Europe : the Soultz Hot Dry Rock Project , 1992 .

[47]  K. Aziz,et al.  Petroleum Reservoir Simulation , 1979 .

[48]  R. Helmig,et al.  A mixed-dimensional finite volume method for two-phase flow in fractured porous media , 2006 .

[49]  Angelika Fruehauf,et al.  A First Course In Numerical Analysis , 2016 .

[50]  J. Nordbotten,et al.  Finite volume methods for elasticity with weak symmetry , 2015, 1512.01042.

[51]  Peter Dietrich,et al.  Flow and transport in fractured porous media , 2005 .

[52]  Olav Møyner,et al.  The multiscale restriction smoothed basis method for fractured porous media (F-MsRSB) , 2016, J. Comput. Phys..

[53]  B. Berkowitz Characterizing flow and transport in fractured geological media: A review , 2002 .

[54]  H. Tchelepi,et al.  Multi-scale finite-volume method for elliptic problems in subsurface flow simulation , 2003 .

[55]  Yalchin Efendiev,et al.  Coarsening of three-dimensional structured and unstructured grids for subsurface flow☆ , 2007 .