Combinatorial Approaches in Quantum Information Theory

We investigate the exploitation of various combinatorial properties of graphs and set systems to study several issues in quantum information theory. We characterize the combinatorics of distributed EPR pairs for preparing multi-partite entanglement in a real communication network. This combinatorics helps in the study of various problems in multi-party case by just reducing to the two-party case. Particularly, we use this combinatorics to (1) study various possible and impossible transformations of multi-partite states under LOCC, thus presenting an entirely new approach, not based on entropic criterion, to study such state transformations. (2) present a protocol and proof of its unconditional security for quantum key distribution amongst several trusted parties. (3) propose an idea to combine the features of quantum key distribution and quantum secret sharing. We investigate all the above issues in great detail and finally conclude briefly with some open research directions based on our research.

[1]  Sudebkumar Prasant Pal,et al.  Multi-partite Quantum Entanglement versus Randomization: Fair and Unbiased Leader Election in Networks , 2003, quant-ph/0306195.

[2]  Hideki Imai,et al.  Improving quantum secret-sharing schemes , 2001 .

[3]  M. Kafatos Bell's theorem, quantum theory and conceptions of the universe , 1989 .

[4]  M. Nielsen Conditions for a Class of Entanglement Transformations , 1998, quant-ph/9811053.

[5]  Albrecht Beutelspacher,et al.  How to Say "No" , 1990, EUROCRYPT.

[6]  Peter Hoyer,et al.  Multiparty quantum communication complexity. , 1997 .

[7]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[8]  D. Bruß Characterizing Entanglement , 2001, quant-ph/0110078.

[9]  M. Partovi Universal measure of entanglement. , 2003, Physical review letters.

[10]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[11]  P. Oscar Boykin,et al.  A Proof of the Security of Quantum Key Distribution , 1999, STOC '00.

[12]  Michal Horodecki,et al.  Entanglement measures , 2001, Quantum Inf. Comput..

[13]  Stephen Wiesner,et al.  Conjugate coding , 1983, SIGA.

[14]  K. Matsumoto,et al.  Shor-Preskill-type security proof for quantum key distribution without public announcement of bases , 2003 .

[15]  J. Bell,et al.  Speakable and Unspeakable in Quatum Mechanics , 1988 .

[16]  Hugo Krawczyk,et al.  Proactive Secret Sharing Or: How to Cope With Perpetual Leakage , 1995, CRYPTO.

[17]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[18]  A. Peres,et al.  Quantum code words contradict local realism , 1996, quant-ph/9611011.

[19]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[20]  B. Yurke,et al.  Einstein-Podolsky-Rosen effects from independent particle sources. , 1992, Physical review letters.

[21]  Dominic Mayers,et al.  Unconditional security in quantum cryptography , 1998, JACM.

[22]  N. Gisin,et al.  Maximal violation of Bell's inequality for arbitrarily large spin , 1992 .

[23]  R. Feynman Simulating physics with computers , 1999 .

[24]  Jian-Wei Pan,et al.  Experimental entanglement purification of arbitrary unknown states , 2003, Nature.

[25]  G. R. BLAKLEY Safeguarding cryptographic keys , 1979, 1979 International Workshop on Managing Requirements Knowledge (MARK).

[26]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[27]  T. Beth,et al.  Codes for the quantum erasure channel , 1996, quant-ph/9610042.

[28]  Martin Plesch,et al.  Entangled graphs. II. Classical correlations in multiqubit entangled systems , 2003 .

[29]  Ronald de Wolf,et al.  Private Quantum Channels and the Cost of Randomizing Quantum Information , 2000 .

[30]  Vlatko Vedral,et al.  Security of EPR-based quantum cryptography against incoherent symmetric attacks , 2001 .

[31]  Jean Baudrillard Marshall MacLuhan, Understanding Media : the Extensions of Man, Mc Graw-Hill Book company, cop. 1964 , 1967 .

[32]  Kiel T. Williams,et al.  Extreme quantum entanglement in a superposition of macroscopically distinct states. , 1990, Physical review letters.

[33]  Richard M. Wilson,et al.  A course in combinatorics , 1992 .

[34]  Narsingh Deo,et al.  Graph Theory with Applications to Engineering and Computer Science , 1975, Networks.

[35]  Harry Buhrman,et al.  Quantum Entanglement and Communication Complexity , 2000, SIAM J. Comput..

[36]  Home,et al.  Incompatibility between quantum mechanics and classical realism in the "strong" macroscopic limit. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[37]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[38]  Sudhir Kumar Singh,et al.  Generalized quantum secret sharing , 2003, quant-ph/0307200.

[39]  Hideki Imai,et al.  A Quantum Information Theoretical Model for Quantum Secret Sharing Schemes , 2003 .

[40]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[41]  Julia Kempe,et al.  Multiparticle entanglement and its applications to cryptography , 1999 .

[42]  Charles H. Bennett,et al.  Exact and asymptotic measures of multipartite pure-state entanglement , 1999, Physical Review A.

[43]  H. Weinfurter,et al.  Entangling Photons Radiated by Independent Pulsed Sources a , 1995 .

[44]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[45]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[46]  Jozef Gruska Foundations of Computing , 1997 .

[47]  N Gisin,et al.  Quantum communication between N partners and Bell's inequalities. , 2001, Physical review letters.

[48]  Adam D. Smith Quantum secret sharing for general access structures , 2000 .

[49]  J. Cirac,et al.  Quantum repeaters based on entanglement purification , 1998, quant-ph/9808065.

[50]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[51]  Somshubhro Bandyopadhyay,et al.  Classification of nonasymptotic bipartite pure-state entanglement transformations , 2002 .

[52]  Joos Vandewalle,et al.  Advances in Cryptology - EUROCRYPT '89, Workshop on the Theory and Application of of Cryptographic Techniques, Houthalen, Belgium, April 10-13, 1989, Proceedings , 1990, EUROCRYPT.

[53]  D. Gottesman Theory of quantum secret sharing , 1999, quant-ph/9910067.

[54]  Mário Ziman,et al.  Diluting quantum information: An analysis of information transfer in system-reservoir interactions , 2002 .

[55]  Jozef Gruska,et al.  Quantum Computing , 2008, Wiley Encyclopedia of Computer Science and Engineering.

[56]  S. Massar,et al.  Multipartite classical and quantum secrecy monotones , 2002, quant-ph/0202103.

[57]  Sudhir Kumar Singh,et al.  Unconditionally Secure Multipartite Quantum Key Distribution , 2003 .

[58]  R. Bhatia Matrix Analysis , 1996 .

[59]  D. Bouwmeester,et al.  The Physics of Quantum Information , 2000 .

[60]  Anthony J. G. Hey,et al.  Feynman Lectures on Computation , 1996 .

[61]  V. Buzek,et al.  Entangled graphs: Bipartite entanglement in multiqubit systems , 2002, quant-ph/0211020.

[62]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[63]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[64]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[65]  N. Gisin,et al.  Quantum cryptography , 1998 .

[66]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[67]  P. Knight,et al.  Multiparticle generalization of entanglement swapping , 1998 .

[68]  M. Hillery,et al.  Broadcasting of entanglement via local copying , 1997 .

[69]  Adam D. Smith,et al.  Secure multi-party quantum computation , 2002, STOC '02.

[70]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[71]  R. Graham,et al.  Handbook of Combinatorics , 1995 .

[72]  V. Vedral The role of relative entropy in quantum information theory , 2001, quant-ph/0102094.

[73]  Lo,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1999, Science.

[74]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[75]  Christopher Isham,et al.  Lectures On Quantum Theory: Mathematical And Structural Foundations , 1995 .

[76]  Jean-Jacques Quisquater,et al.  Advances in Cryptology — EUROCRYPT ’89 , 1991, Lecture Notes in Computer Science.

[77]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[78]  H. Weinfurter,et al.  THREE-PARTICLE ENTANGLEMENTS FROM TWO ENTANGLED PAIRS , 1997 .

[79]  Brian Cantwell Smith,et al.  The Foundations of Computing , 1996 .

[80]  M. Koashi,et al.  Quantum entanglement for secret sharing and secret splitting , 1999 .

[81]  E. Kreyszig Introductory Functional Analysis With Applications , 1978 .

[82]  Hoi-Kwong Lo,et al.  Is Quantum Bit Commitment Really Possible? , 1996, ArXiv.

[83]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[84]  Sudebkumar Prasant Pal,et al.  Characterizing the combinatorics of distributed EPR pairs for multi-partite entanglement , 2003 .

[85]  I. Herstein,et al.  Topics in algebra , 1964 .

[86]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[87]  Josh Benaloh,et al.  Generalized Secret Sharing and Monotone Functions , 1990, CRYPTO.

[88]  John Preskill,et al.  Secure quantum key distribution with an uncharacterized source. , 2003, Physical review letters.