A Geometric Method to Construct Minimal Peer Prediction Mechanisms

Minimal peer prediction mechanisms truthfully elicit private information (e.g., opinions or experiences) from rational agents without the requirement that ground truth is eventually revealed. In this paper, we use a geometric perspective to prove that minimal peer prediction mechanisms are equivalent to power diagrams, a type of weighted Voronoi diagram. Using this characterization and results from computational geometry, we show that many of the mechanisms in the literature are unique up to affine transformations, and introduce a general method to construct new truthful mechanisms.

[1]  Yoav Shoham,et al.  Eliciting truthful answers to multiple-choice questions , 2009, EC '09.

[2]  Jens Witkowski Robust peer prediction mechanisms , 2015 .

[3]  David C. Parkes,et al.  Peer prediction without a common prior , 2012, EC '12.

[4]  Boi Faltings,et al.  A Robust Bayesian Truth Serum for Non-Binary Signals , 2013, AAAI.

[5]  Paul Resnick,et al.  Eliciting Informative Feedback: The Peer-Prediction Method , 2005, Manag. Sci..

[6]  Kim C. Border,et al.  Infinite Dimensional Analysis: A Hitchhiker’s Guide , 1994 .

[7]  Franz Aurenhammer,et al.  A criterion for the affine equivalence of cell complexes inRd and convex polyhedra inRd+1 , 1987, Discret. Comput. Geom..

[8]  Boi Faltings,et al.  Incentives for expressing opinions in online polls , 2008, EC '08.

[9]  R. Zeckhauser,et al.  Efficiency Despite Mutually Payoff-Relevant Private Information: The Finite Case , 1990 .

[10]  Boi Faltings,et al.  Incentives for Answering Hypothetical Questions , 2011 .

[11]  David C. Parkes,et al.  Learning the Prior in Minimal Peer Prediction , 2013 .

[12]  D. Prelec A Bayesian Truth Serum for Subjective Data , 2004, Science.

[13]  Ian A. Kash,et al.  General Truthfulness Characterizations Via Convex Analysis , 2012, WINE.

[14]  Franz Aurenhammer,et al.  Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..

[15]  Steffen Borgwardt,et al.  On Soft Power Diagrams , 2013, J. Math. Model. Algorithms Oper. Res..

[16]  David C. Parkes,et al.  A Robust Bayesian Truth Serum for Small Populations , 2012, AAAI.

[17]  Franz Aurenhammer,et al.  Recognising Polytopical Cell Complexes and Constructing Projection Polyhedra , 1987, J. Symb. Comput..

[18]  Konstantin A. Rybnikov,et al.  Stresses and Liftings of Cell-Complexes , 1999, Discret. Comput. Geom..

[19]  Anirban Dasgupta,et al.  Crowdsourced judgement elicitation with endogenous proficiency , 2013, WWW.

[20]  Boi Faltings,et al.  Robust Incentive-Compatible Feedback Payments , 2006, TADA/AMEC.