A Geometric Method to Construct Minimal Peer Prediction Mechanisms
暂无分享,去创建一个
[1] Yoav Shoham,et al. Eliciting truthful answers to multiple-choice questions , 2009, EC '09.
[2] Jens Witkowski. Robust peer prediction mechanisms , 2015 .
[3] David C. Parkes,et al. Peer prediction without a common prior , 2012, EC '12.
[4] Boi Faltings,et al. A Robust Bayesian Truth Serum for Non-Binary Signals , 2013, AAAI.
[5] Paul Resnick,et al. Eliciting Informative Feedback: The Peer-Prediction Method , 2005, Manag. Sci..
[6] Kim C. Border,et al. Infinite Dimensional Analysis: A Hitchhiker’s Guide , 1994 .
[7] Franz Aurenhammer,et al. A criterion for the affine equivalence of cell complexes inRd and convex polyhedra inRd+1 , 1987, Discret. Comput. Geom..
[8] Boi Faltings,et al. Incentives for expressing opinions in online polls , 2008, EC '08.
[9] R. Zeckhauser,et al. Efficiency Despite Mutually Payoff-Relevant Private Information: The Finite Case , 1990 .
[10] Boi Faltings,et al. Incentives for Answering Hypothetical Questions , 2011 .
[11] David C. Parkes,et al. Learning the Prior in Minimal Peer Prediction , 2013 .
[12] D. Prelec. A Bayesian Truth Serum for Subjective Data , 2004, Science.
[13] Ian A. Kash,et al. General Truthfulness Characterizations Via Convex Analysis , 2012, WINE.
[14] Franz Aurenhammer,et al. Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..
[15] Steffen Borgwardt,et al. On Soft Power Diagrams , 2013, J. Math. Model. Algorithms Oper. Res..
[16] David C. Parkes,et al. A Robust Bayesian Truth Serum for Small Populations , 2012, AAAI.
[17] Franz Aurenhammer,et al. Recognising Polytopical Cell Complexes and Constructing Projection Polyhedra , 1987, J. Symb. Comput..
[18] Konstantin A. Rybnikov,et al. Stresses and Liftings of Cell-Complexes , 1999, Discret. Comput. Geom..
[19] Anirban Dasgupta,et al. Crowdsourced judgement elicitation with endogenous proficiency , 2013, WWW.
[20] Boi Faltings,et al. Robust Incentive-Compatible Feedback Payments , 2006, TADA/AMEC.