Algebraic Multigrid: From Academia to Industry

The research on multigrid in the 1970s opened revolutionary perspectives for the efficient solution of discretized elliptic partial differential equations. In spite of this, it took nearly three decades for it to be seriously recognized and used outside the research community. Surprisingly, not the original geometric multigrid (GMG) but algebraic multigrid (AMG) finally brought the breakthrough. When SCAI (Fraunhofer Institute for Algorithms and Scientific Computing)—formerly an institute of the German National Research Center of Information Technology (GMD)—became a Fraunhofer institute in 2001, applied research at SCAI necessarily got a very strong industrial focus. In particular, the primary goal of SCAI’s further AMG development was to help industrial software developers exploit the scientific progress in numerical solver research to their benefit.

[1]  Peter Bastian,et al.  The Iterative Solver Template Library , 2006, PARA.

[2]  Marian Brezina,et al.  Convergence of algebraic multigrid based on smoothed aggregation , 1998, Numerische Mathematik.

[3]  Stephen F. McCormick,et al.  Multigrid Methods for Three-Dimensional Petroleum Reservoir Simulation , 1989 .

[4]  Y. Saad,et al.  Iterative solution of linear systems in the 20th century , 2000 .

[5]  Piet Hemker A note on defect correction processes with an approximate inverse of deficient rank , 1981 .

[6]  Klaus Stüben Europort-D: Commercial Benefits of Using Parallel Technology , 1997, PARCO.

[7]  S. B. Atienza-Samols,et al.  With Contributions by , 1978 .

[8]  K. Stüben A review of algebraic multigrid , 2001 .

[9]  Sebastian Gries System-AMG Approaches for Industrial Fully and Adaptive Implicit Oil Reservoir Simulations , 2015 .

[10]  Klaus Stüben,et al.  Preconditioning for Efficiently Applying Algebraic Multigrid in Fully Implicit Reservoir Simulations , 2013, ANSS 2013.

[11]  Martin J. Blunt,et al.  A 3D Field-Scale Streamline-Based Reservoir Simulator , 1997 .

[12]  Robert D. Falgout,et al.  hypre: A Library of High Performance Preconditioners , 2002, International Conference on Computational Science.

[13]  Keith H. Coats A Note on IMPES and Some IMPES-Based Simulation Models , 2000 .

[14]  Achi Brandt,et al.  Bootstrap AMG , 2011, SIAM J. Sci. Comput..

[15]  K. Aziz,et al.  Petroleum Reservoir Simulation , 1979 .

[16]  Klaus Stüben,et al.  Algebraic Multigrid for Industrial Semiconductor Device Simulation , 2003 .

[17]  Mary F. Wheeler,et al.  Deflation AMG Solvers for Highly Ill-Conditioned Reservoir Simulation Problems , 2007 .

[18]  Marian Brezina,et al.  Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems , 2005, Computing.

[19]  Peter Thum Algebraic Multigrid for the Multi-Ion Transport and Reaction Model - A Physics-Aware Approach , 2013 .

[20]  Yvan Notay,et al.  Recursive Krylov‐based multigrid cycles , 2008, Numer. Linear Algebra Appl..

[21]  Artem Napov,et al.  An Algebraic Multigrid Method with Guaranteed Convergence Rate , 2012, SIAM J. Sci. Comput..

[22]  Naomi H. Naik,et al.  The improved robustness of multigrid elliptic solvers based on multiple semicoarsened grids , 1993 .

[23]  Robert Strzodka,et al.  AmgX: A Library for GPU Accelerated Algebraic Multigrid and Preconditioned Iterative Methods , 2015, SIAM J. Sci. Comput..

[24]  A. Brandt,et al.  The Multi-Grid Method for the Diffusion Equation with Strongly Discontinuous Coefficients , 1981 .

[25]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[26]  H. Rentz-Reichert,et al.  UG – A flexible software toolbox for solving partial differential equations , 1997 .

[27]  J. R. Wallis,et al.  Incomplete Gaussian Elimination as a Preconditioning for Generalized Conjugate Gradient Acceleration , 1983 .

[28]  A. Brandt Algebraic multigrid theory: The symmetric case , 1986 .

[29]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[30]  Tamara G. Kolda,et al.  An overview of the Trilinos project , 2005, TOMS.

[31]  Robert Weigel,et al.  An automatic multi-level solver switching strategy for PEEC-based EMC simulation , 2007, 2007 18th International Zurich Symposium on Electromagnetic Compatibility.

[32]  Tanja Clees,et al.  AMG Strategies for PDE Systems with Applications in Industrial Semiconductor Simulation , 2005 .

[33]  Tanja Clees,et al.  Efficient algebraic multigrid for migration-diffusion-convection-reaction systems arising in electrochemical simulations , 2010, J. Comput. Phys..

[34]  J. Dendy Black box multigrid , 1982 .

[35]  T. Clees,et al.  An Efficient Algebraic Multigrid Solver Strategy for Adaptive Implicit Methods in Oil-Reservoir Simulation , 2010 .

[36]  Achi Brandt,et al.  Lean Algebraic Multigrid (LAMG): Fast Graph Laplacian Linear Solver , 2011, SIAM J. Sci. Comput..

[37]  Klaus Stüben,et al.  Parallel Algebraic Multigrid , 2017, Scientific Computing and Algorithms in Industrial Simulations.

[38]  Takashi Washio,et al.  Flexible Multiple Semicoarsening for Three-Dimensional Singularly Perturbed Problems , 1998, SIAM J. Sci. Comput..

[39]  Naturwissenschaftlichen Fakultat der Johannes Algebraic Multigrid Methods for Large Scale Finite Element Equations , 2001 .

[40]  Thomas A. Manteuffel,et al.  Algebraic Multigrid Based on Element Interpolation (AMGe) , 2000, SIAM J. Sci. Comput..

[41]  Klaus Stüben,et al.  Algebraic Multigrid for Selected PDE Systems , 2002 .

[42]  W. Mulder A new multigrid approach to convection problems , 1989 .

[43]  Tanja Clees,et al.  Towards physics-oriented smoothing in algebraic multigrid for systems of partial differential equations arising in multi-ion transport and reaction models , 2010, Numer. Linear Algebra Appl..

[44]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[45]  S. Mijalkovic,et al.  Application of an algebraic multigrid solver to process simulation problems , 2000, 2000 International Conference on Simulation Semiconductor Processes and Devices (Cat. No.00TH8502).

[46]  A. Brandt Multi-level adaptive technique (MLAT) for fast numerical solution to boundary value problems , 1973 .

[47]  P. M. De Zeeuw,et al.  Matrix-dependent prolongations and restrictions in a blackbox multigrid solver , 1990 .

[48]  Martin J. Blunt,et al.  A Streamline-Based 3D Field-Scale Compositional Reservoir Simulator , 1997 .